The overall goal was to generate an epithelial-mesenchymal transition (EMT) model using lens epithelial cells-induced pluripotent stem cells to elucidate EMT-regulatory factors during posterior capsular opacification (PCO). For this purpose, the mouse lens epithelial cells-derived mesenchymal cells were reprogrammed to induced pluripotent stem cells (iPSC) and differentiated to lens epithelial cells to be used to determine regulatory factors during EMT. Lens epithelial cells from one-month-old C57BL/6 mice were transitioned to mesenchymal cells in culture, and were reprogrammed to iPSC by delivering reprogramming factors in a single polycistronic lentiviral vector (co-expressing four transcription factors, Oct 4, Sox2, Klf4, and Myc). iPSC were differentiated to epithelial cells by a three-step process using noggin, basic fibroblast growth factor (bFGF), bone morphogenetic protein 4 (BMP4) and Wnt-3. At various time points, the cells/clones were immunocytochemically analyzed for epithelial cell markers (Connexin-43 and E-cadherin), mesenchymal cell markers (Alpha-smooth muscle actin), stem cell markers (Sox1, Oct4, SSEA4 and Tra60) and lens-specific epithelial cell markers (αA- and βA3/A1-crystallins). By increasing the number of genetic transductions, the time needed for generating iPSC from lens mesenchymal cells was reduced, successfully reprogrammed epithelial/mesenchymal cells into iPSC, and retransformed iPSC into lens epithelial cells by the growth factors' treatment. The epithelial cells could serve as a model system to elucidate regulatory factors involved during EMT to therapeutically stop it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818140PMC
http://dx.doi.org/10.1016/j.bbrep.2019.100696DOI Listing

Publication Analysis

Top Keywords

lens epithelial
24
epithelial cells
20
cell markers
16
pluripotent stem
12
cells
12
stem cells
12
mesenchymal cells
12
epithelial
9
epithelial cells-induced
8
cells-induced pluripotent
8

Similar Publications

SP1/COL1A2/ZEB1 axis promotes TGF-β2-induced lens epithelial cell proliferation, migration, invasion and EMT process.

Exp Eye Res

December 2024

Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China. Electronic address:

Posterior capsule opacification (PCO) is the most common complication after cataract surgery. In this study, we used transforming growth factor beta-2 (TGF-β2)-induced SRA01/04 cells to mimic PCO cell model and explored the functions and underlying mechanisms of specific protein 1 (SP1) in TGF-β2-induced SRA01/04 cell development. MTT assay and EdU assay were carried out to explore the proliferation of SRA01/04 cells.

View Article and Find Full Text PDF

Aim: To investigate the biocompatibility and bacterial adhesion properties of light responsive materials (LRM) and analyze the feasibility and biosafety of employing LRM in the preparation of accommodative intraocular lenses (AIOLs).

Methods: Employing fundamental experimental research techniques, LRM with human lens epithelial cells (hLECs) and human retinal pigment epithelium cells (ARPE-19 cells) were co-cultured. Commercially available intraocular lenses (IOLs) were used as controls to perform cell counting kit-8 (CCK-8), cell staining under varying light intensities, cell adhesion and bacterial adhesion experiments.

View Article and Find Full Text PDF

Purpose: To report the clinical outcomes achieved in refractory cases of neurotrophic keratopathy (NK) through the utilization of insulin eye drops alone or in conjunction with a drug-depository contact lens (DDCL).

Observations: This multicentric prospective open-label uncontrolled case series included consecutive patients with NK refractory to conventional treatment. Insulin eye drops (1 unit/mL) were prescribed 4 times/day in all cases, and a Therapeutic Hyper-CL™ soft contact lens (EyeYon Medical, Ness Ziona, Israel), designed to act as a drug reservoir, was applied in selected patients.

View Article and Find Full Text PDF

Reprogramming of iPSCs to NPCEC-like cells by biomimetic scaffolds for zonular fiber reconstruction.

Bioact Mater

March 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Ectopia lentis (EL), characterised by impaired zonular fibers originating from non-pigmented ciliary epithelial cells (NPCEC), presents formidable surgical complexities and potential risks of visual impairment. Cataract surgery is the only treatment method for EL, but it leads to the loss of accommodative power of the lens post-operatively. Furthermore, the challenge of repairing zonular ligaments remains a significant global issue.

View Article and Find Full Text PDF

Phacoemulsification combined with intraocular lens implantation is the primary treatment for cataract. Although this treatment strategy benefits patients with cataracts, posterior capsule opacification (PCO) remains a common complication that impairs vision and affects treatment outcomes. The pathogenesis of PCO is associated with the proliferation, migration, and fibrogenesis activity of residual lens epithelial cells, with epithelial-mesenchymal transition (EMT) serving as a key mechanism underlying the condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!