Ultralow frequency (ULF) waves play a fundamental role in the dynamics of the inner magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion, and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale mission, we characterize the evolution of ULF waves during a high-speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the Magnetospheric Multiscale spacecraft, we estimate the toroidal mode ULF azimuthal wave number throughout the geomagnetic storm. We concentrate on the toroidal mode as the HSS compresses the dayside magnetosphere resulting in an asymmetric magnetic field topology where toroidal mode waves can interact with energetic electrons. Analysis of the mode structure and wave numbers demonstrates that the generation of the observed ULF waves is a combination of externally driven waves, via the Kelvin-Helmholtz instability, and internally driven waves, via unstable ion distributions. Further analysis of the periods and toroidal azimuthal wave numbers suggests that these waves can couple with the core electron radiation belt population via the drift resonance during the storm. The azimuthal wave number and structure of ULF wave power (broadband or discrete) have important implications for the inner magnetospheric and radiation belt dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813628PMC
http://dx.doi.org/10.1029/2017JA024877DOI Listing

Publication Analysis

Top Keywords

wave power
24
azimuthal wave
16
ulf waves
16
radiation belt
16
ulf wave
16
wave number
12
geomagnetic storm
12
toroidal mode
12
wave
11
ulf
9

Similar Publications

Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR). In this work, we address the pSARassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation.

View Article and Find Full Text PDF

We have previously shown in small studies that full brain Transcranial Radiofrequency Wave Treatment (TRFT) to subjects with Alzheimer's Disease could stop and reverse their cognitive decline. An 8-emitter head device, the "MemorEM", was used in these studies to provide TRFT at 915 MHz frequency and power level of 1.6 W/kg Specific Absorption Rate (SAR) during daily 1-hour treatments.

View Article and Find Full Text PDF

Multi-step optimization with operational scenarios for hull form and propulsor design for pod-driven cruise ships.

Heliyon

December 2024

State Key Laboratory of Ocean Engineering, School of Naval Architecture, Civil and Ocean Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

With the increasing demand for reducing CO2 emissions by the International Maritime Organization (IMO), controlling a ship's energy consumption at the design stage is crucial for proposing a 'greener' design. Some efforts have been made to consider the Energy Efficiency Design Index (EEDI) and the Energy Efficiency Operational Index (EEOI); however, the latter remains highly complex and contentious. In this study, a multistep optimization analysis method was developed to integrate EEDI and EEOI evaluations during the design stage to meet low emission requirements.

View Article and Find Full Text PDF

Physical Simulation Experiment on the Rock Breaking Efficiency of Pulse Type Controllable Shock Wave.

ACS Omega

December 2024

Shenmu Ningtiaota Mining Company, Shaanxi Coal and Chemical Industry Group, Shenmu, Shaanxi 719300, China.

Given that conducting controllable shock wave tests in actual rock formations underground in coal mines affects coal mine production with the parameters required for equipment design and incurs significant costs, a series of ground tests were conducted separately. First, the impact of energy storage on rock breaking efficiency was analyzed. Then, physical simulation experiments were conducted on the differential efficiency of controllable shock waves on high-strength cement, sandstone, granite, solid granite, and limestone.

View Article and Find Full Text PDF

A hybrid microgrid powered by hydrogen is an energy infrastructure that depends on hydrogen as its primary energy carrier within a localized network. This study proposed a novel bi-level optimization approach to enhance power quality and cost efficiency of the system. In the quest to improve energy management systems (EMS) and enhance power quality, a bi-level optimization approach named Particle swarm optimization-Modified water wave optimization (PSO-MWWO) has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!