It is well-known that the adaptability of coral-Symbiodiniaceae symbiosis to thermal stress varies among coral species, but the cause and/or mechanism behind it are not well-understood. In this study, we aimed to explore this issue based on zooxanthellae density (ZD) and Symbiodiniaceae genus/subclade. Hemocytometry and next-generation sequencing of the internal transcribed spacer region 2 (ITS2) marker gene were used to observe ZDs and Symbiodiniaceae genera/subclades associated with 15 typical coral species in the southern South China Sea (SCS). Average ZDs of all corals were in low levels, ranging from 0.84 to 1.22 × 10 cells cm, with a total of five Symbiodiniaceae genera, , and , as well as 24 dominant subclades, were detected and varied among these coral species. was dominated by (subclade D1/D1a), and other colonial corals were dominated by , but the subclades were varied among these species. and were dominated by C15, and , and were dominated by C40. , and five species of Faviidae were mainly associated with types of C3u and Cspc. In contrast to other colonial corals, the dominant subclade of solitary was C27, with high host specificity. Our study indicates that coral thermal stress adaptability is mainly affected by dominant Symbiodiniaceae type instead of ZD in the southern SCS. Some heat-sensitive corals, such as corals, have acquired a high abundance of heat-tolerant to adapt to thermal stress. This could be the main reason for these corals becoming the dominant corals in this reef region. Background subclades analyses showed significant differences among coral species in subclade quantity and diversity. These suggest that numbers of coral species may have adapted to high environmental temperature by adopting various symbionts and/or associating with heat-tolerant Symbiodiniaceae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813740 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.02343 | DOI Listing |
Sci Data
January 2025
Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA.
Trait-based approaches are revolutionizing our understanding of high-diversity ecosystems by providing insights into the principles underlying key ecological processes, such as community assembly, species distribution, resilience, and the relationship between biodiversity and ecosystem functioning. In 2016, the Coral Trait Database advanced coral reef science by centralizing trait information for stony corals (i.e.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.
View Article and Find Full Text PDFOecologia
January 2025
Department of Oceanography, Uehiro Center for the Advancement of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Biology, Indiana University, Bloomington, Indiana, USA.
The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).
View Article and Find Full Text PDFBiometals
January 2025
Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!