Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6811647PMC
http://dx.doi.org/10.3389/fphar.2019.01204DOI Listing

Publication Analysis

Top Keywords

i/r injury
28
injury decreasing
12
injury
10
preclinical systematic
8
systematic review
8
10-item checklist
8
studies ranged
8
organ protection
8
protection ngr1
8
ngr1 i/r
8

Similar Publications

Testicular torsion is a common emergency in adolescents, and can lead to severe ischemia reperfusion injury (IRI). LncRNA has been shown to increase during ischemia, but its role in testicular IRI remains unknown. Focusing on this research gap, we utilized biallelic mutant mice and Sertoli cell line (TM4) to construct in vivo and in vitro models of ischemia/reperfusion (I/R) and oxygen-glucose deprivation/reperfusion (OGD/R).

View Article and Find Full Text PDF

Background: Vagus nerve stimulation (VNS) exhibits protective effects against remote organ injury following ischemia-reperfusion (I/R). However, its effects on acute myocardial injury induced by hepatic I/R in rats, and the underlying mechanisms, remain unclear.

Methods: Thirty male rats were randomly assigned to five groups: Sham, I/R, VNS, VNS + Erastin, and VNS + DMSO.

View Article and Find Full Text PDF

Background: Renal fibrosis and vascular rarefaction are significant complications of ischemia/reperfusion (I/R) injury. Human umbilical cord mesenchymal cell-derived exosomes (hucMSC-exos) have shown potential in mitigating these conditions. This study investigates the role of miR-29a-3p in exosomes and its therapeutic effects on I/R-induced renal damage.

View Article and Find Full Text PDF

Ischemic stroke, a neurological condition with a complicated etiology that is accompanied by severe inflammation and oxidative stress, and ethanol (EtOH) may aggravate ischemia/reperfusion (I/R)-induced brain damage. However, the effect of prolonged alcohol intake on acute brain injury remains ambiguous. As part of the mitogen-activated protein kinase (MAPK) family, p38γ is involved in ferroptosis and inflammation in various diseases.

View Article and Find Full Text PDF

Effective transcatheter intracoronary delivery of mRNA-lipid nanoparticles targeting the heart.

J Control Release

March 2025

Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan. Electronic address:

Messenger RNA (mRNA) has great potential to provide innovative medical solutions in the treatment of heart failure. Although lipid nanoparticles (LNPs) are an established mRNA delivery system, effectively delivering LNPs to the heart remains a significant challenge. Here, we evaluated the efficacy of transcatheter intracoronary (IC) administration compared to intravenous (IV) and intramyocardial (IM) administration in normal and ischemia-reperfusion (I/R) model rabbit hearts using LNPs encapsulating Firefly Luciferase (FLuc) mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!