Reconsolidation normally functions to update and maintain memories in the long-term. However, this process can be disrupted pharmacologically to weaken memories. Exploiting such experimental amnesia to disrupt the maladaptive reward memories underpinning addiction may provide a novel therapeutic avenue to prevent relapse. Here, we tested whether targeted disruption of the reconsolidation of instrumental (operant) lever pressing for cocaine resulted in protection against different forms of relapse in a rat self-administration model. We first confirmed that systemic injection of the non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 did impair reconsolidation to reduce spontaneous instrumental drug-seeking memory at test. This deficit was not rescued by pharmacological induction of stress with the anxiogenic α-noradrenergic receptor antagonist yohimbine. In contrast, cocaine-seeking was restored to control levels following priming with cocaine itself, or presentation of a cocaine-associated cue. These results suggest that while stress-induced relapse can be reduced by disruption of instrumental memory reconsolidation, the apparent sparing of the pavlovian cue-drug memory permitted other routes to relapse. Therefore, future reconsolidation-based therapeutic strategies for addictive drug-seeking may need to target both instrumental and pavlovian memories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803497 | PMC |
http://dx.doi.org/10.3389/fnbeh.2019.00242 | DOI Listing |
Front Psychiatry
December 2024
Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, Netherlands.
Introduction: Improved effectiveness and treatment adherence is needed in smoking cessation (SC) therapies. Another important challenge is to disrupt maladaptive drug-related memories. To achieve these goals, we developed a novel treatment strategy on the basis of motion-assisted memory desensitization and reprocessing (3MDR).
View Article and Find Full Text PDFInt J Neuropsychopharmacol
December 2024
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
Background: Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference (CPP) paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Tasmania, TAS, Australia.
This study establishes mirdametinib as the first MEK inhibitor that can undergo clinical development for psychiatric indications such as post-traumatic stress disorder (PTSD). PTSD is characterized by persistent traumatic memories with limited effective treatment options. A body of evidence suggests that memory storage is dynamic and constantly updated through post-retrieval modification a process termed reconsolidation.
View Article and Find Full Text PDFNeurobiol Learn Mem
December 2024
Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
Consolidated long-term memories can undergo strength or content modification via protein synthesis-dependent reconsolidation. This is the process by which a reminder cue initiates reactivation of the memory trace, triggering destabilization. Older and more strongly encoded spatial memories can resist destabilization due to biological boundary conditions.
View Article and Find Full Text PDFNeuron
December 2024
School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China. Electronic address:
Recalling systems-consolidated neocortex-dependent remote memories re-engages the hippocampus in a process called systems reconsolidation. However, underlying mechanisms, particularly for the origin of the reinstated hippocampal memory engram, remain elusive. By developing a triple-event labeling tool and employing two-photon imaging, we trace hippocampal engram ensembles from memory acquisition to systems reconsolidation and find that remote recall recruits a new engram ensemble in the hippocampus for subsequent memory retrieval.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!