Psychoactive drugs used during pregnancy can affect the development of the brain of offspring, directly triggering neurological disorders or increasing the risk for their occurrence. Caffeine is the most widely consumed psychoactive drug, including during pregnancy. In Wild type mice, early life exposure to caffeine renders offspring more susceptible to seizures. Here, we tested the long-term consequences of early life exposure to caffeine in THY-Tau22 transgenic mice, a model of Alzheimer's disease-like Tau pathology. Caffeine exposed mutant offspring developed cognitive earlier than water treated mutants. Electrophysiological recordings of hippocampal CA1 pyramidal cells revealed that early life exposure to caffeine changed the way the glutamatergic and GABAergic drives were modified by the Tau pathology. We conclude that early-life exposure to caffeine affects the Tau phenotype and we suggest that caffeine exposure during pregnancy may constitute a risk-factor for early onset of Alzheimer's disease-like pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797851 | PMC |
http://dx.doi.org/10.3389/fncel.2019.00438 | DOI Listing |
Pediatr Allergy Immunol
January 2025
EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal.
Background: We aimed to investigate the association between maternal caffeine intake during pregnancy and asthma in children by 10 years of age.
Methods: We considered 5585 mother-child pairs enrolled in a population-based birth cohort. Consumption of regular and decaffeinated coffee, black and green tea, and cola beverages before and during pregnancy was obtained through face-to-face interviews within 72 h after giving birth, and total caffeine intake (mg/day) was estimated.
Environ Geochem Health
January 2025
School of Civil Engineering, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
Urban environments are heavily influenced by various activities, leading to contamination of water sources by emerging contaminants (ECs). Among these, caffeine (CAF) and N, N-diethyl-meta-toluamide (DEET) are notable ECs frequently found in domestic sewage due to human activities. Despite extensive research on emerging contaminants, limited studies have focused on the seasonal variations, human health and ecological risks of CAF and DEET in urban groundwater, particularly in Indian cities.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland.
In recent years, the consumption of energy drinks (EDs) by adolescents and young adults has increased significantly, so concerns have been raised about the potential health risks associated with excessive ED consumption. Most analyses on EDs focus on the caffeine content. Research on the content of minerals (essential and toxic) in energy drinks can be considered scarce.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real 11519, Spain. Electronic address:
The presence of pharmaceuticals in the aquatic environment is increasing due to their growing use for human health. Although most studies are based on short exposures to these contaminants, the present study has emerged from the need to study pharmaceuticals in aquatic organisms over a long-term exposure to understand any multi-generational chronic effects and alterations regarding habitat selection. Therefore, this study shows: (1) the ability of Daphnia magna to colonize environments contaminated with caffeine, ibuprofen and fluoxetine, and (2) the effect of these pharmaceuticals on reproduction and habitat selection (under two scenarios: with and without food) after a long-term exposure period of three generations.
View Article and Find Full Text PDFJ Appl Physiol (1985)
December 2024
Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!