AI Article Synopsis

  • Lanthanide triflates, like ytterbium and dysprosium, are effective Lewis acid catalysts for carbonyl compound reactions due to their strong attraction to oxygen and resistance to water.
  • Despite their use, the specific catalytic species formed during these reactions remains unclear.
  • Using mass spectrometry and ion spectroscopy, researchers have identified various intermediates in a catalyzed condensation reaction, revealing that the reactivity of these lanthanide complexes is influenced by their charge and suggesting that triply charged complexes are particularly important.

Article Abstract

Lanthanide triflates are effective Lewis acid catalysts in reactions involving carbonyl compounds due to their high oxophilicity and water stability. Despite the growing interest, the identity of the catalytic species formed in lanthanide catalysed reactions is still unknown. We have therefore used mass spectrometry and ion spectroscopy to intercept and characterize the intermediates in a reaction catalysed by ytterbium and dysprosium triflates. We were able to identify a number of lanthanide intermediates formed in a simple condensation reaction between a C-acid and an aldehyde. Results show correlation between the reactivity of lanthanide complexes and their charge state and suggest that the triply charged complexes play a key role in lanthanide catalysed reactions. Spectroscopic data of the gaseous ions accompanied by theoretical calculations reveal that the difference between catalytic efficiencies of ytterbium and dysprosium ions can be explained by their different electrophilicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813638PMC
http://dx.doi.org/10.1002/ejoc.201900171DOI Listing

Publication Analysis

Top Keywords

lewis acid
8
lanthanide triflates
8
lanthanide catalysed
8
catalysed reactions
8
ytterbium dysprosium
8
lanthanide
6
intermediates lewis
4
acid catalysis
4
catalysis lanthanide
4
triflates lanthanide
4

Similar Publications

Abstraction of Hydride from Alkanes and Dihydrogen by the Perfluorotrityl Cation.

Angew Chem Int Ed Engl

January 2025

Texas A&M University, Department of Chemistry, Texas A&M University, 77842, College Station, UNITED STATES OF AMERICA.

Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.

View Article and Find Full Text PDF

Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles.

J Org Chem

January 2025

School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.

The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination.

View Article and Find Full Text PDF

A Chain Entanglement Gelled SnO₂ Electron Transport Layer for Enhanced Perovskite Solar Cell Performance and Effective Lead Capture.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.

SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.

View Article and Find Full Text PDF

Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity.

View Article and Find Full Text PDF

The synthesis of metal-organic frameworks (MOFs) by low energy input has been a long-term target for practical applications yet remains a great challenge. Herein, we developed a low-energy MOF growth strategy at a temperature down to 50 °C by simply introducing seeds into the reaction system. The MOFs are continuously grown on the surface of the seeds at a growth rate dozens of times higher than that of conventional solvothermal synthesis at low temperature, while the resulting MOFs possess high crystallinity, porosity, and stability similar to solvothermal seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!