The acquisition of sulfur from environment and its assimilation is essential for fungal growth and activities. Here, we describe novel features of the regulatory network of sulfur metabolism in Ogataea parapolymorpha, a thermotolerant methylotrophic yeast with high resistance to harsh environmental conditions. A short bZIP protein (OpMet4p) of O. parapolymorpha, displaying the combined structural characteristics of yeast and filamentous fungal Met4 homologues, plays a key role as a master regulator of cell homeostasis during sulfur limitation, but also its function is required for the tolerance of various stresses. Domain swapping analysis, combined with deletion analysis of the regulatory domains and genes encoding OpCbf1p, OpMet28p, and OpMet32p, indicated that OpMet4p does not require the interaction with these DNA-binding cofactors to induce the expression of sulfur genes, unlike the Saccharomyces cerevisiae Met4p. ChIP analysis confirmed the notion that OpMet4p, which contains a canonical bZIP domain, can bind the target DNA in the absence of cofactors, similar to homologues in other filamentous fungi. Collectively, the identified unique features of the O. parapolymorpha regulatory network, as the first report on the sulfur regulation by a short yeast Met4 homologue, provide insights into conservation and divergence of the sulfur regulatory networks among diverse ascomycetous fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.14849 | DOI Listing |
Plant Physiol Biochem
December 2024
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa L.). The initiation of the floral transition process signifies the beginning of the reproductive phase.
View Article and Find Full Text PDFFood Chem
February 2025
Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. Electronic address:
Bitter gourd (Momordica charantia L.) is a tropical and subtropical vegetable that is popular for its rich nutritional content. However, its immature fruit has a short shelf life and spoils easily.
View Article and Find Full Text PDFInt J Biol Macromol
September 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China. Electronic address:
Autophagy
September 2024
Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials.
View Article and Find Full Text PDFPlant J
September 2024
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
Plant immune regulation is complex. In addition to proteins, lipid molecules play critical roles in modulating immune responses. The mutant pi4kβ1,2 is mutated in two phosphatidylinositol 4-kinases PI4Kβ1 and β2 involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!