The reaction of methane with copper-exchanged mordenite with two different Si/Al ratios was studied by means of in situ NMR and infrared spectroscopies. The detection of NMR signals was shown to be possible with high sensitivity and resolution, despite the presence of a considerable number of paramagnetic Cu species. Several types of surface-bonded compounds were found after reaction, namely molecular methanol, methoxy species, dimethyl ether, mono- and bidentate formates, Cu monocarbonyl as well as carbon monoxide and dioxide, which were present in the gas phase. The relative fractions of these species are strongly influenced by the reaction temperature and the structure of the copper sites and is governed by the Si/Al ratio. While methoxy species bonded to Brønsted acid sites, dimethyl ether and bidentate formate species are the main products over copper-exchange mordenite with a Si/Al ratio of 6; molecular methanol and monodentate formate species were observed mainly over the material with a Si/Al ratio of 46. These observations are important for understanding the methane partial oxidation mechanism and for the rational design of the active materials for this reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201912668 | DOI Listing |
ACS Omega
December 2024
School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China.
Alkaline fusion is a pivotal process influencing the cost of synthesizing zeolite from coal gangue. This study examined the effects of alkaline fusion temperature ( ), treatment duration ( ) and the NaOH/coal gangue weight ratio ( ) on the composition and properties of the products, as well as their adsorption capacities for Cd ( ) and Pb ( ). Response surface methodology (RSM) was employed to analyze the interactions among these factors, and the adsorption mechanisms for Cd and Pb were investigated using X-ray diffraction, scanning electron microscopy-EDS, Fourier transform infrared, X-ray photoelectron spectroscopy, and N adsorption-desorption techniques.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Aluminum is one of the most in-demand nonferrous metals in the world. The secondary aluminum dross (SAD) produced during aluminum smelting is a type of solid waste that urgently requires disposal. SAD, municipal solid waste incineration fly ash, and bottom slag were used as raw materials to prepare porous ceramsite in a laboratory in this study.
View Article and Find Full Text PDFMolecules
December 2024
Zhejiang Academy of Forestry, Liuhe Road 399, Hangzhou 310023, China.
Lactic acid is an important platform feedstock for synthesizing various chemicals. Lactic acid is normally converted from any sugar such as glucose, and Sn-β zeolite is an effective catalyst. In this study, β zeolite with different Si/Al ratios was prepared and characterized.
View Article and Find Full Text PDFMolecules
November 2024
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
The direct synthesis of dimethyl carbonate (DMC) from CO and methanol over ceria-based catalysts, in the presence of a dehydrating agent shifting the thermodynamical equilibrium of the reaction, has received significant interest recently. In this work, several dehydrating agents, such as molecular sieves, 2,2-dimethoxypropane (DMP), dimethoxymethane (DMM) and 1,1,1-trimethoxymethane (TMM), are combined with commercial ceria to compare their influence on the DMC yield obtained under the same set of operating conditions. TMM is found to be the most efficient; however, its conversion is not complete even after 48 h of reaction.
View Article and Find Full Text PDFNature
December 2024
Laboratoire Catalyse et Spectrochimie, Normandie University, ENSICAEN, UNICAEN, CNRS, Caen, France.
Zeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO and AlO), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts. However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!