A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform. | LitMetric

Polymer dots as a novel probe for fluorescence sensing of dopamine and imaging in single living cell using droplet microfluidic platform.

Anal Chim Acta

Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; University of Western Ontario, N6A 5B7, London, Ontario, Canada; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran. Electronic address:

Published: December 2019

We report here simple synthetic method for preparing polymer dots (Pdots) via hydrothermal treatment of organic dye (neutral red), urea and trisodium citrate. The prepared Pdots with enhanced quantum yield (quantum yield: 30.2%) was used as a selective and sensitive probe for fluorescent sensing of dopamine (DA) with high selectivity and sensitivity. The as-synthesized Pdots exhibited strong fluorescence intensity at 435 nm, which DA can trigger remarkable fluorescence quenching of such luminescent Pdots on the basis of inner filter effect (IFE) and static quenching effect (SQE). A wide linearity range (0.001 μM-900 μM) for DA detection was obtained with lower DL (3 S/N) of 0.28 nM, and no interference from other molecules such as ascorbic acid, urine acid, glutathione, glucose, epinephrine, arginine, cysteine, proline, creatinine, serine; alanine, L-therionine, Hg, Mg, K, Ca and Na. The designed sensor was successfully applied in the imaging of DA in single living PC12 cells using droplet microfluidic approach, indicating its acceptable practicability of the proposed assay for DA detection with ultrahigh sensitivity in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.08.036DOI Listing

Publication Analysis

Top Keywords

polymer dots
8
sensing dopamine
8
imaging single
8
single living
8
droplet microfluidic
8
quantum yield
8
dots novel
4
novel probe
4
probe fluorescence
4
fluorescence sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!