Introduction: The air gap technique (AGT) is an approach to radiation dose optimisation during fluoroscopy where an "air gap" is used in place of an anti-scatter grid to reduce scatter irradiation. The AGT is effective in adults but remains largely untested in children. Effects are expected to vary depending on patient size and the amount of scatter irradiation produced.
Methods: Fluoroscopy and cineangiography were performed using a Phillips Allura Fluoroscope on tissue simulation anthropomorphic phantoms representing a neonate, 5-year-old, and teenager. Monte Carlo simulations were then used to estimate effective radiation dose first using a standard recommended imaging approach and then repeated using the AGT. Objective image quality assessments were performed using an image quality phantom.
Results: Effective radiation doses for the neonate and 5-year-old phantom increased consistently (2-92%) when the AGT was used compared to the standard recommended imaging approaches in which the anti-scatter grid is removed at baseline. In the teenage phantom, the AGT reduced effective doses by 5-59%, with greater dose reductions for imaging across the greater thoracic dimension of lateral projection. The AGT increased geometric magnification but with no detectable change in image blur or contrast differentiation.
Conclusions: The AGT is an effective approach for dose reduction in larger patients, particularly for lateral imaging. Compared to the current dose optimisation guidelines, the technique may be harmful in smaller children where scatter irradiation is minimal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937389 | PMC |
http://dx.doi.org/10.1017/S1047951119002506 | DOI Listing |
Mikrochim Acta
January 2025
Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan.
Traditional surface-enhanced Raman scattering (SERS) substrates seeking uniformity and reproducibility of the Raman signal often assume and require that hot spots remain consistently stable during Raman testing. Recently, the non-uniform accumulation in SERS sample pre-concentration strategies have inspired the direct use of self-healing noble metal aerogels (NMAs), as the sample pretreatment presented in this work, and uncovered more diverse Raman information of substances during the dynamic process of laser irradiation. Rare characteristic peaks such as 820 cm⁻ for R6G within a specific concentration range were observed, and potential processes including R6G dimerization and desorption were analyzed.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, USA.
Metastable phases can exist within local minima in the potential energy landscape when they are kinetically "trapped" by various processing routes, such as thermal treatment, grain size reduction, chemical doping, interfacial stress, or irradiation. Despite the importance of metastable materials for many technological applications, little is known about the underlying structural mechanisms of the stabilization process and atomic-scale nature of the resulting defective metastable phase. Investigating ion-irradiated and nanocrystalline zirconia with neutron total scattering experiments, we show that metastable tetragonal ZrO consists of an underlying structure of ferroelastic, orthorhombic nanoscale domains stabilized by a network of domain walls.
View Article and Find Full Text PDFNanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFGels
December 2024
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., Building 22, Tver 170026, Russia.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!