Magnetic resonance imaging is a well-established method for diagnostics and/or prognostics of various pathological conditions. Cartesian k-space trajectory-based acquisition is the popular choice in clinical magnetic resonance imaging, owing to its simple acquisition, reconstruction schemes, and well-understood artifacts. However, non-Cartesian trajectories are relatively more time efficient, with involved methods for image reconstruction. In this review, we survey non-Cartesian trajectories from the standpoint of rapid prototyping and/or implementation. We provide examples of two-dimensional (2D) and 3D non-Cartesian k-space trajectories with analytical equations, merits, limitations, and applications. We also demonstrate implementation of three variants of the 2D radial and spiral trajectories (standard, golden angle, and tiny golden angle), using open-source software. For rapid prototyping, pulse sequences were designed with the help of Pulseq. In-vitro phantom and in-vivo brain data were acquired with three variants of radial and spiral trajectories. The obtained raw data were reconstructed using a graphical programming interface. The signal-to-noise ratios of each of these reconstructions were quantified and assessed.

Download full-text PDF

Source
http://dx.doi.org/10.1615/CritRevBiomedEng.2019029380DOI Listing

Publication Analysis

Top Keywords

rapid prototyping
12
two-dimensional non-cartesian
8
non-cartesian k-space
8
k-space trajectories
8
graphical programming
8
programming interface
8
magnetic resonance
8
resonance imaging
8
non-cartesian trajectories
8
three variants
8

Similar Publications

Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development.

BMC Biomed Eng

January 2025

William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL, 36688, USA.

Background: The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy.

View Article and Find Full Text PDF

Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.

View Article and Find Full Text PDF

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

Strategic design and development of nanomaterials-based detection platforms specific to critical biomarkers like bilirubin holds immense promise for revolutionizing early disease detection. Bilirubin (BR) plays a pivotal role as a biomarker for liver function, making accurate and timely detection of BR crucial for diagnosing and monitoring of liver diseases. In this work, we synthesized blue light emitting graphene quantum dots (GQDs) via a single step pyrolysis method, which exhibited excellent photostability and biocompatibility.

View Article and Find Full Text PDF

The manufacturing sector's interest in additive manufacturing (AM) methods is increasing daily. The increase in energy consumption requires optimization of energy consumption in rapid prototyping technology. This study aims to minimize energy consumption with determined production parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!