Cortical responses to tactile stimuli in preterm infants.

Eur J Neurosci

Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

Published: February 2020

The conventional assessment of preterm somatosensory functions using averaged cortical responses to electrical stimulation ignores the characteristic components of preterm somatosensory evoked responses (SERs). Our study aimed to systematically evaluate the occurrence and development of SERs after tactile stimulus in preterm infants. We analysed SERs performed during 45 electroencephalograms (EEGs) from 29 infants at the mean post-menstrual age of 30.7 weeks. Altogether 2,087 SERs were identified visually at single-trial level from unfiltered signals capturing also their slowest components. We observed salient SERs with a high-amplitude slow component at a high success rate after hand (95%) and foot (83%) stimuli. There was a clear developmental change in both the slow wave and the higher-frequency components of the SERs. Infants with intraventricular haemorrhage (IVH; eleven infants) had initially normal SERs, but those with bilateral IVH later showed a developmental decrease in the ipsilateral SER occurrence after 30 weeks of post-menstrual age. Our study shows that tactile stimulus applied at bedside elicits salient SERs with a large slow component and an overriding fast oscillation, which are specific to the preterm period. Prior experimental research indicates that such SERs allow studying both subplate and cortical functions. Our present findings further suggest that they might offer a window to the emergence of neurodevelopmental sequelae after major structural brain lesions and, hence, an additional tool for both research and clinical neurophysiological evaluation of infants before term age.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.14613DOI Listing

Publication Analysis

Top Keywords

sers
9
cortical responses
8
preterm infants
8
preterm somatosensory
8
tactile stimulus
8
post-menstrual age
8
salient sers
8
slow component
8
infants
6
preterm
5

Similar Publications

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.

View Article and Find Full Text PDF

Background: Despite wide adoption in the healthcare of safety event report (SER) systems, there is a paucity of unified structures for prompt analysis and action while retaining reporter confidentiality. We used a synesis framework to change siloed reviews of safety reports to a comprehensive appraisal of quality, safety, productivity and reliability to facilitate interventions.

Methods: After a needs assessment survey, we launched serial plan-do-study-act cycles to (1) enhance teams' ability to access SERs, (2) facilitate regular multidisciplinary review of SERs to identify actionable opportunities, (3) allocate action priority using failure mode and effects analysis, and (4) launch actions and summarise data.

View Article and Find Full Text PDF

A paper-based SERS/colorimetry substrate for reliable detection.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:

For on-site analysis, the combination of surface enhanced Raman scattering (SERS) and colorimetry, as a dual-mode detection, can effectively improve the accuracy of detection, and reduce the influence of instrument fluctuation, which greatly improves the accuracy and reliability of the results. However, the preparation of SERS/colorimetry substrates are usually time-consuming and costly, which limits their practical applications. In this paper, a hydrophobic paper-based SERS/colorimetry substrate can be prepared by a simple spraying method.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!