Water masses influence bacterioplankton community structure in summer Kongsfjorden.

Extremophiles

School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China.

Published: January 2020

To ascertain the saying "Everything is everywhere, but the environment selects", it was imperative to find out the main factor influencing bacterioplankton composition at genus level of Kongsfjorden where was influenced both by glacier melting water and Atlantic water. Thus, bacterioplankton diversity was investigated using pyrosequencing. In addition, nutrients, chlorophyll a, in situ temperature and salinity were measured. There were seventeen of 33 identified genera with relative abundance > 0.1%. Redundancy analysis showed that 73.02% of bacterioplankton community variance could be explained by environmental parameters. Furthermore, most of the abundant genera demonstrated significant correlation with environment parameters revealed by correlation analysis. Moreover, phosphate, nitrate and Chl a concentration, and the abundance of top nine identified genera varied with water mass significantly as shown by analysis of variance. Our results supported the notion that environmental factors, especially water mass had significant effect on bacterioplankton distribution at genus level. Considering the high sensitivity to environmental change and low error rate in identification, bacterioplankton at genus level could be potential bio-markers for monitoring environmental changes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-019-01139-yDOI Listing

Publication Analysis

Top Keywords

genus level
12
bacterioplankton community
8
identified genera
8
water mass
8
bacterioplankton
6
water
5
water masses
4
masses influence
4
influence bacterioplankton
4
community structure
4

Similar Publications

Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.

View Article and Find Full Text PDF

Introduction: Allergic rhinitis (AR) is a common respiratory disorder influenced by various factors in its pathogenesis. Recent studies have begun to emphasize the significant role of gut microbiota in immune modulation and its potential association with the development of AR. This research aims to characterize the gut microbiota of patients with AR who are sensitized via inhalation, utilizing 16S rRNA sequencing to shed light on the pathogenesis of AR and identify potential therapeutic targets.

View Article and Find Full Text PDF

Periweissella beninensis LMG 25373, belonging to the recently established Periweissella genus, exhibits unique motility and high adhesion capabilities, indicating significant probiotic potential, including resilience under simulated gastrointestinal conditions. This study demonstrates for the first time that P. beninensis LMG 25373^T produces a dextran-type exopolysaccharide (EPS) with a distinctive high degree of branching (approximately 71 % of α-(1 → 6)-linkages and 29 % α-(1 → 3)-linkages).

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

Microbiome gained attention as a cofactor in cancers originating from epithelial tissues. High-risk (hr)HPV infection causes oropharyngeal squamous cell carcinoma but only in a fraction of hrHPV+ individuals, suggesting that other factors play a role in cancer development. We investigated oral microbiome in cancer-free subjects harboring hrHPV oral infection (n = 33) and matched HPV- controls (n = 30).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!