Background: Nanomaterials have advanced behaviors that make them possibly beneficial in various applications in mass and heat transports such as engine cooling, pharmaceutical processes, fuel cells, engine cooling and domestic refrigerator etc. Therefore here we deliberated the entropy generation in unsteady magnetohydrodynamic squeezing flow of viscous nanomaterials between two parallel plates. The upper plate is squeezing towards lower plate. The lower plate exhibits porous character. Energy attributes are discussed through heat flux, dissipation and Joule heating. Furthermore the irreversibility analysis with cubic autocatalysis chemical reaction is also accounted.
Methods: Nonlinear differential systems are converted to ordinary differential system by transformations. For convergent series solution the given system are solved by homotopy analysis method (HAM).
Results: Characteristics of various interesting variables on velocity, Bejan number, concentration, entropy optimization and temperature are deliberated through graphs. Gradient of velocity (C) and Nusselt number (Nu) are numerically computed against various physical variables. Entropy generation and Bejan number both quantitatively enhance versus radiation parameter. For larger squeezing parameter the velocity and temperature field are increased.
Conclusions: The obtained results show that for larger squeezing parameter the velocity field boosts up. Velocity have opposite impact For larger magnetic and porosity parameters. Temperature is decreased for higher values of radiation parameter and Prandtl number. Temperature and concentration have same outcome for thermophoresis parameter. Entropy generation and Bejan number both quantitatively enhance versus radiation parameter, while reverse is hold for Brinkman number.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2019.105149 | DOI Listing |
Sensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mathematics and Physics Engineering, Faculty of Engineering, Mansoura University, El-Mansoura 35516, Egypt.
Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Southwest Institute of Technology and Engineering, Chongqing 400039, China.
High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Occupational Therapy Department, Kuwait University, Jabriya 31470, Kuwait.
Background: Myocardial perfusion imaging (MPI) is a type of single-photon emission computed tomography (SPECT) used to evaluate patients with suspected or confirmed coronary artery disease (CAD). Detection and diagnosis of CAD are complex processes requiring precise and accurate image processing. Proper segmentation is critical for accurate diagnosis, but segmentation issues can pose significant challenges, leading to diagnostic difficulties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!