Evaluation of entropy generation in cubic autocatalytic unsteady squeezing flow of nanofluid between two parallel plates.

Comput Methods Programs Biomed

School of Engineering, University of Portsmouth, Winston Churchill, Avenue Portsmouth PO1 2UP, United Kingdom. Electronic address:

Published: March 2020

Background: Nanomaterials have advanced behaviors that make them possibly beneficial in various applications in mass and heat transports such as engine cooling, pharmaceutical processes, fuel cells, engine cooling and domestic refrigerator etc. Therefore here we deliberated the entropy generation in unsteady magnetohydrodynamic squeezing flow of viscous nanomaterials between two parallel plates. The upper plate is squeezing towards lower plate. The lower plate exhibits porous character. Energy attributes are discussed through heat flux, dissipation and Joule heating. Furthermore the irreversibility analysis with cubic autocatalysis chemical reaction is also accounted.

Methods: Nonlinear differential systems are converted to ordinary differential system by transformations. For convergent series solution the given system are solved by homotopy analysis method (HAM).

Results: Characteristics of various interesting variables on velocity, Bejan number, concentration, entropy optimization and temperature are deliberated through graphs. Gradient of velocity (C) and Nusselt number (Nu) are numerically computed against various physical variables. Entropy generation and Bejan number both quantitatively enhance versus radiation parameter. For larger squeezing parameter the velocity and temperature field are increased.

Conclusions: The obtained results show that for larger squeezing parameter the velocity field boosts up. Velocity have opposite impact For larger magnetic and porosity parameters. Temperature is decreased for higher values of radiation parameter and Prandtl number. Temperature and concentration have same outcome for thermophoresis parameter. Entropy generation and Bejan number both quantitatively enhance versus radiation parameter, while reverse is hold for Brinkman number.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2019.105149DOI Listing

Publication Analysis

Top Keywords

entropy generation
16
bejan number
12
radiation parameter
12
squeezing flow
8
parallel plates
8
engine cooling
8
lower plate
8
generation bejan
8
number quantitatively
8
quantitatively enhance
8

Similar Publications

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.

View Article and Find Full Text PDF

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

Background: Myocardial perfusion imaging (MPI) is a type of single-photon emission computed tomography (SPECT) used to evaluate patients with suspected or confirmed coronary artery disease (CAD). Detection and diagnosis of CAD are complex processes requiring precise and accurate image processing. Proper segmentation is critical for accurate diagnosis, but segmentation issues can pose significant challenges, leading to diagnostic difficulties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!