TCDD-mediated suppression of naïve human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ.

Cell Signal

Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Department of Toxicology & Pharmacology, Michigan State University, East Lansing, MI, United States; Center for Research on Ingredient Safety, MIchigan State University, East Lansing, MI, United States. Electronic address:

Published: January 2020

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant formed as a byproduct in organic synthesis and burning of organic materials. TCDD has potent immunotoxic effects in B lymphocytes resulting in decreased cellular activation and suppressed IgM secretion following activation with CD40 ligand. Previous work from our lab demonstrated that TCDD treatment of naïve human B cells resulted in significant increases in the levels of the tyrosine phosphatase SHP-1, which corresponded with suppression of IgM secretion. STAT3 is a critical B cell transcription factor for B cell activation and secretion of immunoglobulins (Ig). STAT3 dimerizes and translocates to the nucleus following phosphorylation as a result of cytokine receptor signaling. We hypothesized that TCDD-mediated increases in SHP-1 could result in decreased STAT3 tyrosine phosphorylation. Interestingly, only modest changes in the levels of STAT3 tyrosine phosphorylation were observed. By contrast, TCDD significantly reduced levels of STAT3 serine phosphorylation as early as 12h post B cell activation. These results corresponded with decreased inhibitory phosphorylation of the serine specific phosphatase PP2a, which is regulated by SHP-1. Further, studies revealed that interferon gamma (IFNγ), which signals through the type II interferon receptor, can non-canonically induce STAT3 activation via Src kinase activity. Indeed, treatment of human B cells with IFNγ resulted in increased STAT3 serine phosphorylation and reversed TCDD-mediated suppression of the IgM response. Together, these data putatively identify a key event in the mechanism by which TCDD induces suppression of Ig secretion and demonstrate the potential of IFNγ as a means to reverse this effect in primary human B lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903688PMC
http://dx.doi.org/10.1016/j.cellsig.2019.109447DOI Listing

Publication Analysis

Top Keywords

igm secretion
12
stat3 serine
12
tcdd-mediated suppression
8
naïve human
8
stat3
8
human cells
8
suppression igm
8
cell activation
8
stat3 tyrosine
8
tyrosine phosphorylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!