Identification of two novel highly inducible promoters from Bacillus licheniformis by screening transcriptomic data.

Genomics

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, PR China. Electronic address:

Published: March 2020

Bacillus licheniformis TCCC11148 is an important industrial strain used to produce alkaline protease. In this study, the transcriptome of B. licheniformis TCCC11148 was analyzed by high throughput RNA sequencing (RNA-Seq) to identify genes that are expressed differentially in the different phases were detected using RNA-Seq. In total, 440 differentially expressed genes between the 12 h and 48 h groups were identified, including 267 up- and 173 downregulated genes. Additionally, 198 differentially expressed genes were identified in the 48 h vs. the 60 h group, including 182 up- and 16 downregulated genes. To screen for novel inducible promoters, an alkaline protease reporter gene was used to test 24 promoters from 66 candidate genes with obviously higher expression levels (RPKM values) than the control group based on the transcriptome data of B. licheniformis in different phases. Gene 707, related to coenzyme transport and metabolism, and gene 1004, related to posttranslational modification were identified as likely having inducible promoters. The expression level of recombinant strains with reporter genes under the control of promoters p707 and p1004 were 8 times higher than that of the control group. This study contributes a method for finding useful inducible promoters for industrial use based on transcriptomic data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2019.10.021DOI Listing

Publication Analysis

Top Keywords

inducible promoters
16
bacillus licheniformis
8
transcriptomic data
8
licheniformis tccc11148
8
alkaline protease
8
differentially expressed
8
expressed genes
8
downregulated genes
8
control group
8
genes
7

Similar Publications

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels are crucial for detecting and transmitting nociceptive stimuli. Inflammatory pain is associated with sustained increases in TRPA1 and TRPV1 expression in primary sensory neurons. However, the epigenetic mechanisms driving this upregulation remain unknown.

View Article and Find Full Text PDF

TGR5 attenuates DOCA-salt hypertension through regulating histone H3K4 methylation of ENaC in the kidney.

Metabolism

January 2025

Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:

Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.

View Article and Find Full Text PDF

We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!