The Brucella melitensis chronic infection and drug resistance emerged as a severe health problem in humans and domestic cattle. The pathogens fast genome sequences availability fetched the possibility to address novel therapeutics targets in a rationale way. We acquired the core genes set from 56 B. melitensis publically available complete genome sequences. A stringent bioinformatics layout of comparative genomics and reverse vaccinology was followed to identify potential druggable proteins and multi-epitope vaccine constructs from core genes. The 23 proteins were shortlisted as novel druggable targets based on their role in pathogen-specific metabolic pathways, non-homologous to human and human gut microbiome proteins and their druggability potential. Furthermore, potential chimeric vaccine constructs were generated from lead T and B-cell overlapped epitopes in combination with immune enhancer adjuvants and linkers sequences. The molecular docking and MD simulation analyses ensured stable molecular interaction of a finally prioritized vaccine construct with human immune cells receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2019.10.009DOI Listing

Publication Analysis

Top Keywords

potential druggable
8
druggable proteins
8
chimeric vaccine
8
vaccine construct
8
brucella melitensis
8
genome sequences
8
core genes
8
vaccine constructs
8
potential
4
proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!