The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2019.188319 | DOI Listing |
BioDrugs
January 2025
Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
This study aims to synthesize a new localized drug delivery system of bioglass, polyvinyl alcohol (PVA), cellulose (CNC), and sodium alginate (SA) beads as a carrier for methotrexate (MTX) drugs for the treatment of osteosarcoma. Methotrexate /Bioglass-loaded Polyvinyl/Cellulose/Sodium alginate biocomposite beads were prepared via the dropwise method with different concentrations of (65%SiO-30%CaO- 5%PO) bioglass. Samples were named B0, S0, S1, S2, and S3, respectively.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Computer and AI, Cairo University, Giza, Egypt.
Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India. Electronic address:
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:
The bromodomain-containing protein 4 (BRD4) is an epigenetic regulatory 'reader' belonging to the bromodomain and extra-terminal domain (BET) family. Several studies have demonstrated that the high expression of BRD4 is closely related to the occurrence and development of various cancers, so BRD4 has become a promising target for cancer treatment. However, there are no drugs targeting BRD4 available on the market, the development of novel BRD4 inhibitors is of great significance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!