Analytical method for the determination of related substances (RS) in Daclatasvir tablets was optimised using quality by design (QbD) approach. Seven degradants (each more than 1.0%) generated during oxidation study, adversely affected the selectivity of the method. Coelution of the degradant peaks with API and known impurities, suggested failure in developing a stability indicating method. To overcome the shortcomings and develop a robust method, QbD principles were incorporated. Resolution was the critical quality attribute (CQA) and buffer pH, column oven temperature, gradient slope and flow rate were the critical method variables (CMVs) studied through design of experiments (DoE). Discovery of an unknown impurity (named as impurity D, about1.0%) was a key finding from this DoE study. The most crucial responses viz. Resolution between impurity D and the main peak and resolution between the main peak and impurity E demanded contradictory pH requirements. To select the right pH, responses were prioritised and eventually to attain the desired resolution between Daclatasvir and impurity E the value for pH was fixed to 3.0. Next, to improve resolution between impurity D and Daclatasvir, method of steepest ascent was applied to locate an apt value for column oven temperature. Accordingly, experiments were performed at different temperatures along the path of rapid increase in response. Finally, at 45 °C (pH :3.0), both the critical pairs were well resolved. The global optimum was determined through a Response surface methodology (RSM) design with pH and column oven temperature as critical factors. pH 3.0, column oven temperature 44 °C, % MP. B 45% and flow rate 1.0 mL min was found to be the optimum condition. Further, the design space was complimented by establishment of a robust zone through Monte Carlo simulation and capability analysis. An analytical control strategy (ACS) was set up to ensure that the method repeatedly meets its acceptance criteria. The optimised method was successfully validated within the factor ranges mentioned in the ACS. Despite various intricacies, the QbD approach facilitated systematic optimisation of a stability indicating robust method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2019.112943DOI Listing

Publication Analysis

Top Keywords

column oven
16
oven temperature
16
method
11
substances daclatasvir
8
daclatasvir tablets
8
design experiments
8
steepest ascent
8
monte carlo
8
carlo simulation
8
qbd approach
8

Similar Publications

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Injection artifacts in odorant analysis by gas chromatography.

J Chromatogr A

December 2024

Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany. Electronic address:

Odor-active compounds are major quality parameters in food and other consumer products. In the analysis of odorants, gas chromatography (GC) plays a dominant role and is particularly indispensable for odorant screening by GC-olfactometry (GC-O). Whereas artifact formation during workup before GC analysis has been widely discussed, artifact formation during GC injection has not been adequately addressed so far.

View Article and Find Full Text PDF

In this research study, a simple, rapid, sensitive, and cost-effective Reverse Phase High Performance Liquid Chromatography method was developed and validated for determination of Cetirizine and Levocetirizine in human plasma. The drugs were separated on an ACE Generix100-5 C18 RP (250 × 4.6 mm, 5 μm) column, using Acetonitrile and Distilled water pH 7 (59:41 v/v) as mobile phase with a flow rate of 1.

View Article and Find Full Text PDF

A green and simple UPLC method was developed and optimized, adopting a factorial design for simultaneous determination of oseltamivir phosphate and remdesivir with dexamethasone as a co-administered drug in human plasma and using daclatasvir dihydrochloride as an internal standard within 5 min. The separation was established on UPLC column BEH C 1.7 μm (2.

View Article and Find Full Text PDF

Levocetirizine is one of the widely used antihistamines and has the potential to form -nitrosopiperazine (NPZ) during drug synthesis, manufacturing, or storage. NPZ classified as a nitrosamine is a genotoxic impurity with carcinogenic properties. Controlling the presence of NPZ in the active pharmaceutical ingredient (API) and drug products is crucial with levels ideally maintained below 80 ppm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!