Identification of epigenetic mechanisms in paddy crop associated with lowering environmentally related cadmium risks to food safety.

Environ Pollut

Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Published: January 2020

Cadmium (Cd) is a toxic metal that contributes to human diseases such as pediatric cancer and cardiovascular dysfunction. Epigenetic modification caused by Cd exposure is the major factor in etiology of environmentally-relevant diseases. However, the underlying epigenetic mechanism for Cd uptake and accumulation in food crops, particularly those growing in Cd-contaminated environments, is largely unknown. This study investigated uncharacterized regulatory mechanisms and biological functions of global DNA hypomethylation at CG sites that are associated with gene expression for Cd detoxification and accumulation in the food crop rice. Mutation of the CG maintenance enzyme OsMET1 confers rice tolerance to Cd exposure. Genome-wide analysis of OsMET1 loss of function mutant Osmet1 and its wild type shows numerous loci differentially methylated and upregulated genes for Cd detoxification, transport and accumulation. We functionally identified a new locus for a putative cadmium tolerance factor (here termed as OsCTF) and demonstrated that Cd-induced DNA demethylation is the drive of OsCTF expression. The 3'-UTR of OsCTF is the primary site of DNA and histone (H3K9me2) demethylation, which is associated with higher levels of OsCTF transcripts detected in the Osmet1 and Ossdg714 mutant lines. Mutation of OsCTF in rice led to hypersensitivity to Cd and the Osctf line accumulated more Cd, whereas transfer of OsCTF back to the Osctf mutant completely restored the normal phenotype. Our work unveiled an important epigenetic mechanism and will help develop breeding crops that contribute to food security and better human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113464DOI Listing

Publication Analysis

Top Keywords

epigenetic mechanism
8
accumulation food
8
osctf
8
identification epigenetic
4
epigenetic mechanisms
4
mechanisms paddy
4
paddy crop
4
crop associated
4
associated lowering
4
lowering environmentally
4

Similar Publications

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

Super-enhancer-driven SLCO4A1-AS1 is a new biomarker and a promising therapeutic target in glioblastoma.

Sci Rep

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.

Glioblastoma (GBM) is the most common intracranial malignancy, but current treatment options are limited. Super-enhancers (SEs) have been found to drive the expression of key oncogenes in GBM. However, the role of SE-associated long non-coding RNAs (lncRNAs) in GBM remains poorly understood.

View Article and Find Full Text PDF

Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) displays a high degree of spatial subtype heterogeneity and co-existence, linked to a diverse microenvironment and worse clinical outcome. However, the underlying mechanisms remain unclear. Here, by combining preclinical models, multi-center clinical, transcriptomic, proteomic, and patient bioimaging data, we identify an interplay between neoplastic intrinsic AP1 transcription factor dichotomy and extrinsic macrophages driving subtype co-existence and an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Object: N6-methyladenosine (mA), is well known as the most abundant epigenetic modification in messenger RNA, but its influence on laryngeal squamous cell carcinoma (LSCC) remains largely unexplored and poorly understood. This study was designed to explore the effects of mA on WISP1-mediated epithelial-mesenchymal transition (EMT) and tumorigenesis in LSCC.

Methods: mA methylated and expression levels of WISP1 in LSCC tumor tissues and cells were measured by MeRIP-qPCR, qRT-PCR, and western blotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!