The combined effects of cobalt (Co) and copper (Cu) in their toxicity to plants is poorly studied although these two metals co-exist commonly in soil. In this study, a hydroponic experiment was carried out to investigate the effect of longer exposure of two barley genotypes differing in Co tolerance to the combined Co and Cu stress. The results confirmed the previous findings that Co accumulation in plant tissues was reduced by Cu presence, while Cu accumulation was stimulated by Co presence. Moreover, both single and combined treatments of Co and Cu reduced the mineral (Mn, Zn and K) uptake. Co and Cu applied alone or in combination at rate of 50 μM resulted in the significant reduction of plant growth and increase of oxidative stress (ROS and MDA), and meanwhile the capacity of scavenging active oxygen species (AOS) was enhanced, reflected by increased phytochelatin (PC) and glutathione (GSH and GSSG) content, as well as expression of the related genes (HvPCS1 and HvGR1). Yan66, a Co tolerant genotype was less affected in oxidative stress, and had higher AOS scavenging capacity in comparison with Ea52, a Co sensitive one. Among three HvSOD isoforms, only HvFeSOD expression was up-regulated in the combined treatment relative to control as well as the treatment of Co or Cu alone, while HvCuZnSOD and HvMnSOD were down-regulated and unaffected, respectively. In addition, the expressions of metal transporter genes (HvHMA2, HvHMA3 and HvHMA5) varied with genotype and metal treatments, with the extent being greater in Yan66 on the whole. The results suggest that upon longer exposure to the combined stress of Co and Cu, the greater phyto-toxicity than each element alone is associated with more Cu accumulation stimulated by Co and that, the higher regulation of transporter genes observed in Yan66 could in part explain for its higher metal tolerance ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109866DOI Listing

Publication Analysis

Top Keywords

cobalt copper
8
barley genotypes
8
genotypes differing
8
differing tolerance
8
tolerance combined
8
longer exposure
8
combined stress
8
accumulation stimulated
8
oxidative stress
8
transporter genes
8

Similar Publications

Versatile applications of cobalt and copper complexes of biopolymeric Schiff base ligands derived from chitosan.

Int J Biol Macromol

January 2025

Catalytic Applications Laboratory, Department of Chemistry, School of Basic Sciences, Faculty of Science, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, Rajasthan, India. Electronic address:

In the present study, biopolymeric Schiff base (SB) ligands were synthesized from chitosan and isatin. Consequently, their earth abundant transition metal complexes of cobalt and copper were synthesized. All compounds were extensively characterized using FTIR and UV spectroscopy, thermo-gravimetric (TG) analysis, X-ray powder diffraction (XRD) and FESEM (field emission scanning electron microscopy).

View Article and Find Full Text PDF

Studies on the nutritional strength of various hyacinth bean varieties for their potential utilization as promising legume.

J Food Sci Technol

January 2025

Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.

This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.

View Article and Find Full Text PDF

Exploring Metal Ions as Potential Antimicrobial Agents to Combat Future Drug Resistance in .

Microorganisms

January 2025

Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia.

The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.

View Article and Find Full Text PDF

The mining industry in the copper belt region of Africa was initiated in the early 1900s, with copper being the main ore extracted to date. The main objectives of the present study are (1) to characterize the microbial structure, abundance, and diversity in different ecological conditions in the cupriferous city of Lubumbashi and (2) to assess the metal phytoextraction potential of , a main plant species used in tailing. Four ecologically different sites were selected.

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!