Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several types of metal oxide nanoparticles (MO-NPs) are often utilized as one of the novel class of materials in the pharmaceutical industry and human health. The wide use of MO-NPs forces an enhanced understanding of their potential impact on human health and the environment. The research aims to investigate and develop a nano-QFAR (nano-quantitative feature activity relationship) model applying the quasi-SMILES such as cell line, assay, time exposition, concentration, nanoparticles size and metal oxide type for prediction of cell viability (%) of MO-NPs. The total set of 83 quasi-SMILES of MO-NPs divided into training, validation and test sets randomly three times. The statistical model results based on the balance of correlation target function (TF) and index of ideality correlation target function (TF) and the Monte Carlo optimization were compared. The comparison of two target function results indicated that TF improves the predictability of models. The significance of various eclectic features of both increase and decrease of cell viability (%) is provided. Mechanistic interpretation of significant factors for the model are proposed as well. The sufficient statistical quality of three nano-QFAR models based on TF reveals that the developed models can be efficiency for predictions of the cell viability (%) of MO-NPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!