A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the "analytical quality by design" approach. | LitMetric

Development and validation of a UPLC-MS method for determination of atazanavir sulfate by the "analytical quality by design" approach.

Acta Pharm

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015 India.

Published: March 2020

A UPLC-MS method for the estimation of atazanavir sulfate was developed using the "analytical quality by design" approach. The critical chromatographic quality attributes identified were retention time, theoretical plates and peak tailing. The critical method parameters established were percent of organic modifier, flow rate and injection volume. Optimization performed using Box-Behnken Design (BBD) established 10 % organic modifier, 0.4 mL min-1 flow rate and 6-µL injection volume as the optimum method conditions. Atazanavir sulfate eluted at 5.19 min without any interference. Method validation followed international guidelines. The method has proven linearity in the range of 10-90 µg mL-1. Recovery was between 100.2-101.0 % and precision within the accepted limits (RSD 0.2-0.7 %). LOD and LOQ were 2.68 and 8.14 µg mL-1, resp. Stress testing stability studies showed atazanavir sulfate to degrade under acidic and basic conditions. The suggested technique is simple, rapid and sustainable. It is, therefore, suggested for routine analysis of atazanavir sulfate.

Download full-text PDF

Source
http://dx.doi.org/10.2478/acph-2020-0008DOI Listing

Publication Analysis

Top Keywords

atazanavir sulfate
20
uplc-ms method
8
"analytical quality
8
quality design"
8
design" approach
8
organic modifier
8
flow rate
8
injection volume
8
µg ml-1
8
method
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!