Mobilization of metals in wetland ecosystems is a function of the behaviour of a specific metal species and is dependent largely on the prevailing micro-environmental conditions. Apparently, five different chemical forms of metals are known with varying affinity to binding sites, mobility, bioavailability and toxicity. Quantification of these forms of metals in the soils is imperative in predicting their biogeochemical fate and toxicity. In this context, we examined the association of Cu, Pb and Zn, with various geochemical phases in the soil profile of wetland system of Keoladeo National Park, a Ramsar site in India. The assessment covered the soil profile until 100 cm depth at every 25-cm intervals. Different operationally defined geochemical phases in the soil at different depths were examined during the study for respective metal concentrations. Hydrous oxides of Fe-Mn were the major carrier for all the three metals and the fraction associated with exchangeable phase was the least. The low organic matter content in the soil seems to be influencing the metal association with the organic matter (OM-S) phase, which was also a less preferred carrier for metals. For Cu (5.8-78.4%) and Pb (33.5-88.5%), Fe-Mn hydroxide phase was an important binding site and for Zn (31.02-79.03%), it was the silicate mineral matrix (RES phase). This suggests the importance of micro-environmental conditions in the wetland bed such as redox and pH in mobilization of metals. As metals such as Pb have high eco-toxicological potential, an assessment of fractional concentrations of metals provides insights into their mobility and bioavailability in aquatic ecosystems. This aids wetland managers to develop appropriate strategy to maintain quality of inflow water, the single most crucial factor for a wetland ecosystem, and thus controls the micro-environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-019-7913-2 | DOI Listing |
J Environ Manage
January 2025
Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA. Electronic address:
The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científica, Armilla 18100, Spain.
Revealing the origin of life and unambiguously detecting fossil remains of the earliest organisms are closely related aspects of the same scientific research. The synthesis of prebiotic molecular building blocks of life and the first compartmentalization into protocells have been considered two events apart in time, space, or both. We conducted lightning experiments in borosilicate reactors filled with a mixture of gases mimicking plausible geochemical conditions of early Earth.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
The bioaccessibility of cadmium (Cd) and lead (Pb) in the gastrointestinal tract is crucial for health risk assessments of contaminated soils. However, variability in In vitro analytical conditions and soil properties introduces bias and uncertainty in predictions. This study employed three in vitro methods to measure Cd and Pb bioaccessibility during the gastric and gastrointestinal phases, using soil samples incubated for one year.
View Article and Find Full Text PDFSci Rep
January 2025
Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Catania, Corso Italia 57, Catania, Italy.
The compositional heterogeneity of clinopyroxene in products of the 1888-90 eruption at La Fossa of Vulcano has been used to constrain times of the plumbing system reactivation before the eruption. We have also investigated the temporal trend of the SO flux at La Fossa crater since 1978 to gather information about the origin, depths and quantity of magma involved in the recent degassing crises. Petrological data emphasizes migration of deep-seated magmas and their emplacement in the shallow system, clearly supporting the involvement of three distinct phases of mafic replenishments occurred respectively 85-140, 16-35 and 2-7 years before the 1888-90 eruption.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:
Many construction products are in contact with, e.g., rain and seepage water during their service life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!