Using the D3R Grand Challenge 4 dataset containing Beta-secretase 1 (BACE) and Cathepsin S (CatS) inhibitors, we have evaluated the performance of our in-house docking workflow that involves in the first step the selection of the most suitable docking software for the system of interest based on structural and functional information available in public databases, followed by the docking of the dataset to predict the binding modes and ranking of ligands. The macrocyclic nature of the BACE ligands brought additional challenges, which were dealt with by a careful preparation of the three-dimensional input structures for ligands. This provided top-performing predictions for BACE, in contrast with CatS, where the predictions in the absence of guiding constraints provided poor results. These results highlight the importance of previous structural knowledge that is needed for correct predictions on some challenging targets. After the end of the challenge, we also carried out free energy calculations (i.e. in a non-blinded manner) for CatS using the pmx software and several force fields (AMBER, Charmm). Using knowledge-based starting pose construction allowed reaching remarkable accuracy for the CatS free energy estimates. Interestingly, we show that the use of a consensus result, by averaging the results from different force fields, increases the prediction accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-019-00232-wDOI Listing

Publication Analysis

Top Keywords

free energy
12
energy calculations
8
d3r grand
8
grand challenge
8
challenge dataset
8
force fields
8
performance evaluation
4
evaluation molecular
4
docking
4
molecular docking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!