The brain of diving mammals is repeatedly exposed to low oxygen conditions (hypoxia) that would have caused severe damage to most terrestrial mammals. Some whales may dive for >2 h with their brain remaining active. Many of the physiological adaptations of whales to diving have been investigated, but little is known about the molecular mechanisms that enable their brain to survive sometimes prolonged periods of hypoxia. Here, we have used an RNA-Seq approach to compare the mRNA levels in the brains of whales with those of cattle, which serves as a terrestrial relative. We sequenced the transcriptomes of the brains from cattle (Bos taurus), killer whale (Orcinus orca), and long-finned pilot whale (Globicephala melas). Further, the brain transcriptomes of cattle, minke whale (Balaenoptera acutorostrata) and bowhead whale (Balaena mysticetus), which were available in the databases, were included. We found a high expression of genes related to oxidative phosphorylation and the respiratory electron chain in the whale brains. In the visual cortex of whales, transcripts related to the detoxification of reactive oxygen species were more highly expressed than in the visual cortex of cattle. These findings indicate a high oxidative capacity in the whale brain that might help to maintain aerobic metabolism in periods of reduced oxygen availability during dives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2019.110593 | DOI Listing |
J Comp Psychol
November 2024
University of Veterinary Medicine Vienna, Department of Interdisciplinary Life Sciences.
The featured article by Sakurai and Tomonaga (2024) in this issue has set out to test to what extent dolphins can estimate relative differences between pairs of object numbers by echolocation. For this they used three consecutive experiments with multiple controls and compared their data statistically to existing data from visual experiments done on other species. Previous studies already indicate that dolphins can visually estimate relative numerosity (e.
View Article and Find Full Text PDFSci Total Environ
October 2023
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
Heliyon
September 2024
Department of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran.
Reducing thermal unit operating costs and emissions is the goal of the multi-objective issue known as multi-area economic/emission dispatch (MAEED) in smart grids. Using renewable energy (RE) have significantly lowered greenhouse gas emissions and ensured the sustainability of the environment. With regard to constraints such as prohibited operating zones (POZs), valve point effect (VPE), transmission losses in the network, ramp restrictions, tie-line capacity, this study aims to minimize operating costs and emission objectives by solving the multi-area dynamic economic/emission dispatch (MADEED) problem in the presence of RE units and energy storage (ES) systems.
View Article and Find Full Text PDFFront Microbiol
August 2024
Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
Cetaceans play a crucial role in marine ecosystems; however, research on their gastrointestinal microbiota remains limited due to sampling constraints. In this study, we collected hindgut samples from 12 stranded cetaceans and performed 16S rRNA gene amplicon sequencing to investigate microbial composition and functional potentials. Analysis of ZOTUs profiles revealed that the phyla Firmicutes, Proteobacteria, and Bacteroidetes dominated all hindgut samples.
View Article and Find Full Text PDFJ R Soc Interface
September 2024
Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA.
For 88 years, biologists and engineers have sought to understand the hydrodynamics enabling dolphins to swim at speeds seemingly beyond their energetic capabilities, a phenomenon known as Gray's paradox. Hydromechanical models calculating the drag of swimming dolphins estimated power requirements for sustained high-speed swimming, which were physiologically impossible. Using an uncrewed aerial vehicle, we calculated the total power of free-ranging dusky dolphins () at speeds from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!