Objective: Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease and dystonia improves motor symptoms and quality of life. Traditionally, pallidal borders have been demarcated by electrophysiological microelectrode recordings (MERs) during DBS surgery. However, detection of pallidal borders can be challenging due to the variability of the firing characteristics of neurons encountered along the trajectory. MER can also be time-consuming and therefore costly. Here we show the feasibility of real-time machine learning classification of striato-pallidal borders to assist neurosurgeons during DBS surgery.
Approach: An electrophysiological dataset from 116 trajectories of 42 patients consisting of 11 774 MER segments of background spiking activity in five classes of disease was used to train the classification algorithm. The five classes included awake Parkinson's disease patients, as well as awake and lightly anesthetized genetic and non-genetic dystonia patients. A machine learning algorithm was designed to provide prediction of the striato-pallidal borders, based on hidden Markov models (HMMs) and the L-distance measure in normalized root mean square (NRMS) and power spectra of the MER. We tested its performance prospectively against the judgment of three electrophysiologists in the operating rooms of three hospitals using newly collected data.
Main Results: The awake and the light anesthesia dystonia classes could be merged. Using MER NRMS and spectra, the machine learning algorithm was on par with the performance of the three electrophysiologists across the striatum-GPe, GPe-GPi, and GPi-exit transitions for all disease classes.
Significance: Machine learning algorithms enable real-time GPi navigation systems to potentially shorten the duration of electrophysiological mapping of pallidal borders, while ensuring correct pallidal border detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ab53ac | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Background: In Alzheimer's Disease (AD) trials, clinical scales are used to assess treatment effect in patients. Minimizing statistical uncertainty of trial outcomes is an important consideration to increase statistical power. Machine learning models can leverage baseline data to create AI-generated digital twins - individualized predictions (or prognostic scores) of how each patient's clinical outcomes may change during a trial assuming they received placebo.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom; UK Dementia Research Institute, Care Research and Technology Centre, London, United Kingdom.
Background: Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well-being of PLWD, cause stress to carers and increase pressure on healthcare services.
Method: We use routinely collected in-home sensory data to monitor nocturnal activity and sleep data.
Alzheimers Dement
December 2024
Department of Psychology & Language Sciences, University College London, London, United Kingdom.
Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.
Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!