This study utilized effect-directed analysis (EDA) combined with full-scan screening analysis (FSA) to identify aryl hydrocarbon receptor (AhR)-active compounds in sediments of inland creeks flowing into Lake Sihwa, South Korea. The specific objectives were to (i) investigate the major AhR-active fractions of organic extracts of sediments by using H4IIE-luc in vitro bioassay (4 h and 72 h exposures), (ii) quantify known AhR agonists, such as polycyclic aromatic hydrocarbons (PAHs) and styrene oligomers (SOs), (iii) identify unknown AhR agonists by use of gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS), and (iv) determine contributions of AhR agonists to total potencies measured by use of the bioassay. FSA was conducted on fractions F2.6 and F2.7 (aromatics with log K 5-7) in extracts of sediment from Siheung Creek (industrial area). Those fractions exhibited significant AhR-mediated potency as well as relatively great concentrations of PAHs and SOs. FSA detected 461 and 449 compounds in F2.6 and F2.7, respectively. Of these, five tentative candidates of AhR agonist were selected based on NIST library matching, aromatic structures and numbers of rings, and available standards. Benz[b]anthracene, 11H-benzo[a]fluorene, and 4,5-methanochrysene exhibited significant AhR-mediated potency in the H4IIE-luc bioassay, and relative potencies of these compounds were determined. Potency balance analysis demonstrated that these three newly identified AhR agonists explained 1.1% to 67% of total induced AhR-mediated potencies of samples, which were particularly great for industrial sediments. Follow-up studies on sources and ecotoxicological effects of these compounds in coastal environments would be required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.105199DOI Listing

Publication Analysis

Top Keywords

ahr agonists
16
major ahr-active
8
lake sihwa
8
sihwa south
8
south korea
8
effect-directed analysis
8
combined full-scan
8
full-scan screening
8
screening analysis
8
f26 f27
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!