Benzophenones (BPs) and other ultra violet (UV) filters (UV-filters) are widely used in sunblock and other personal care products, raising concerns about their adverse health risks to human, especially for children. In the present study, BP-type UV-filters and other four widely used UV-filters were evaluated in the child urinary samples (4-6 years, n = 53), tap water and commercial distilled water in Hong Kong. The results suggested that the target chemicals are ubiquitous in the subject. BP1, BP2, BP3 and BP4 in children urine samples contributed closely to the overall children exposure of UV filters, with detection rates above 58% and geometric means ranging from 44.2 to 76.7 ng/mL. As a contrast, BP3 was the major substance found in the tap water and distilled bottle water, with detection rates of 100% and geometric means of 9.64 and 14.5 ng/L, respectively. There were some significant relationships between urinary UV filters and personal characteristics (BMI values, sex, income level, hand washing frequency, and body location usage), but the health risks associated with UV-filters in Hong Kong children might not be concerning. Only two children applied sun creams in this research, indicating that there were other sources to exposure these chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2019.105246 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
Antarctic environments are dominated by microorganisms, which are vulnerable to viral infection. Although several studies have investigated the phylogenetic repertoire of bacteria and viruses in these poly-extreme environments with freezing temperatures, high ultra violet irradiation levels, low moisture availability and hyper-oligotrophy, the evolutionary mechanisms governing microbial immunity remain poorly understood. Using genome-resolved metagenomics, we test the hypothesis that Antarctic poly-extreme high-latitude microbiomes harbour diverse adaptive immune systems.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Dhahran Techno-Valley, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
The natural and laboratory-accelerated weathering of wood-plastic composites (WPCs) based on high-density polyethylene (HDPE) and polypropylene (PP) plastics was investigated in this study. Injection molded samples of WPCs with different loadings of wood fiber ranging from 0 to 36 wt.% of wood were subjected to laboratory-accelerated weathering and natural weathering.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Materials and Process Development Laboratory, Department of Chemical Engineering, Birla Institute of Technology and Science, K. K. Birla Goa Campus, Pilani, Goa, 403726, India.
In the present study, combustion-synthesized TiO nanoparticles were wet impregnated with Ni, Co, and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green dye. The synthesized materials were characterized for crystallite size, surface morphology, elemental composition, and band gap using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and ultra-violet diffused reflectance spectroscopy, respectively.
View Article and Find Full Text PDFAm J Dent
December 2024
Department of Operative Dentistry, Federal University of Santa Catarina, Brazil.
Purpose: To evaluate the color match and stability of single-shade resin-based composites (RBCs) in Class V restorations before and after ultra-violet light artificial aging.
Methods: Acrylic resin teeth of A1 and A3 were randomly assigned into seven groups to be restored with single-shade RBCs and universal-shade RBCs, shades A1 and A3. Standardized Class V cavities were restored using RBC and underwent accelerated aging for 480 hours.
Sci Rep
December 2024
Jihua Laboratory, Foshan, 528000, China.
Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!