Background: The identity of the amino acid regions of factor VIII (FVIII) that contribute to factor IXa (FIXa) and von Willebrand factor (VWF) binding has not been fully resolved. Previously, we observed that replacing the FVIII C1 domain for the one of factor V (FV) markedly reduces VWF binding and cofactor function. Compared to the FV C1 domain, this implies that the FVIII C1 domain comprises unique surface-exposed elements involved in VWF and FIXa interaction.

Objective: The aim of this study is to identify residues in the FVIII C1 domain that contribute to VWF and FIXa binding.

Methods: Structures and primary sequences of FVIII and FV were compared to identify surface-exposed residues unique to the FVIII C1 domain. The identified residues were replaced with alanine residues to identify their role in FIXa and VWF interaction. This role was assessed employing surface plasmon resonance analysis studies and enzyme kinetic assays.

Results: Five surface-exposed hydrophobic residues unique to the FVIII C1 domain, ie, F2035, F2068, F2127, V2130, I2139 were identified. Functional analysis indicated that residues F2068, V2130, and especially F2127 contribute to VWF and/or FIXa interaction. Substitution into alanine of the also surface-exposed V2125, which is spatially next to F2127, affected only VWF binding.

Conclusion: The surface-exposed hydrophobic residues in C1 domain contribute to cofactor function and VWF binding. These findings provide novel information on the fundamental role of the C1 domain in FVIII life cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.14668DOI Listing

Publication Analysis

Top Keywords

fviii domain
20
surface-exposed hydrophobic
12
hydrophobic residues
12
cofactor function
12
vwf binding
12
domain
9
unique surface-exposed
8
residues
8
residues domain
8
domain factor
8

Similar Publications

Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.

View Article and Find Full Text PDF

Background: Efanesoctocog is a B-domain-deleted, Fc-fusion FVIII linked to the D'D3 domain of VWF and two XTEN polypeptides, designed for an ultra-extended half-life for prophylaxis in hemophilia A, but also aiding in managing acute bleeding or surgery in patients on long-term emicizumab. However, no current laboratory method accurately measures FVIII levels in the presence of emicizumab. We hypothesized that the chromogenic (CSA) FVIII assay, specifically calibrated for efanesoctocog using bovine coagulation factors, could provide an accurate assessment of efanesoctocog activity.

View Article and Find Full Text PDF

Hemophilia A (HA) is caused by mutations in coagulation factor VIII (FVIII). Genome editing in conjunction with patient-derived induced pluripotent stem cells (iPSCs) is a promising cell therapy strategy, as it replaces dysfunctional proteins resulting from genetic mutations with normal proteins. However, the low expression level and short half-life of FVIII still remain significant limiting factors in the efficacy of these approaches in HA.

View Article and Find Full Text PDF

FVIII peptides presented on HLA-DP and identification of an A3 domain peptide binding with high affinity to the commonly expressed HLA-DP4.

Haematologica

December 2024

Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands; Department of Experimental V ascular Medicine, Amsterdam University Medical C enter, Amsterdam.

The development of neutralizing antibodies (inhibitors) against coagulation factor VIII (FVIII) poses a major challenge in hemophilia A (HA) treatment. The formation of FVIII inhibitors is a CD4+ T-cell dependent mechanism which includes antigen presenting cells (APCs), B- and T-helper lymphocytes. APCs present FVIII derived peptides on major histocompatibility complex class II (MHC-II) to CD4+ Tcells.

View Article and Find Full Text PDF

Binding of therapeutic Fc-fused factor VIII to the neonatal Fc receptor at neutral pH associates with poor half-life extension.

Haematologica

December 2024

Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université Paris Cité, Paris.

Fusion of therapeutic proteins to the Fc fragment of human IgG1 promotes their FcRn-mediated recycling and subsequent extension in circulating half-life. However, different Fc-fused proteins, as well as antibodies with different variable domains but identical Fc, may differ in terms of extension in half-life. Here we compared the binding behaviour to FcRn of Fc-fused FVIII, Fc-fused FIX and two human monoclonal HIV-1 broadly-neutralizing IgG1, m66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!