A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction of Gut Microbiota and High-Sodium, Low-Potassium Diet in Altering Plasma Triglyceride Profiles Revealed by Lipidomics Analysis. | LitMetric

Scope: High sodium and low potassium (HNaLK) intake increases the risk of cardiovascular disease (CVD) and metabolic syndrome. The authors investigate if the dietary minerals interact with the gut microbiota to alter circulating lipid profiles, implicated in CVD and metabolic syndrome.

Methods And Results: Plasma samples from Wistar rats fed a control or HNaLK diet with or without antibiotic treatment (n = 7 each, a total of 28) are subjected to lipidomics analysis. Lipidomic data are then analyzed using statistical and bioinformatics tools, which detect numerous lipid species altered by the treatments, and consistently demonstrated interactions between the gut microbiota and the HNaLK diet in altering circulating lipids, mainly triglycerides (TGs). Two distinct TG groups differentially regulated by antibiotic treatment are identified. One group (cluster 1), representing the majority of TG species detected, is downregulated, whereas the other group (cluster 2) is upregulated by antibiotic treatment. Interestingly, cluster 2 TGs are also regulated by the diet. Cluster 2 TGs exhibit greater carbon-chain length and double-bond content and include TGs composed of very-long-chain polyunsaturated fatty acids, associated with reduced diabetes risk.

Conclusion: The HNaLK diet interacts with gut bacteria to alter plasma lipid profiles, which may be related to its health effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201900752DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
hnalk diet
12
antibiotic treatment
12
diet altering
8
lipidomics analysis
8
cvd metabolic
8
lipid profiles
8
group cluster
8
cluster tgs
8
diet
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!