The positive impacts of β-d-mannuronic acid (M2000) on the gene expression of miR-155, its target molecules (SOCS1 and SHIP1), and NF-κB transcription factor were demonstrated in a study using the HEK293-TLR2 cell line. This new drug has been approved as a safe and effective medication by a randomized, multinational, phase III clinical trial on RA patients. The present study aimed to evaluate the oral administration effect of M2000 on the expression levels of the mentioned genes in RA patients. This research was conducted on 12 RA patients and 12 healthy individuals. After extraction of total RNA from PBMCs of patients and synthesis of cDNA, the expression levels of miR-155, SOCS1, SHIP1, and NF-κB genes were measured through quantitative Real-time PCR at baseline and after 12 weeks of M2000 therapy. Our findings showed that the miR-155 gene expression level significantly decreased in the M2000-treated patients compared with the baseline (0.76-fold, with p < .05). The expression levels of SOCS1 and SHIP1 genes significantly increased in the patients treated with M2000 compared with the before treatment (1.46-, 1.54-fold, with p < .01, p < .05, respectively). In addition, it was found that the gene expression level of the NF-κB transcription factor significantly reduced in M2000-treated patients compared with the baseline (0.81-fold, with p < .05). This study showed that the oral administration of M2000 was able to reduce the expression of the miR-155, increase the expression of SOCS1 and SHIP1, and decrease the NF-κB gene expression (Trial Registration Number: IRCT2017100213739N10).

Download full-text PDF

Source
http://dx.doi.org/10.1002/ddr.21619DOI Listing

Publication Analysis

Top Keywords

socs1 ship1
16
gene expression
12
expression levels
12
β-d-mannuronic acid
8
acid m2000
8
expression mir-155
8
mir-155 target
8
target molecules
8
molecules socs1
8
clinical trial
8

Similar Publications

Background: Polymorphonuclear neutrophils (PMN) activation by monosodium urate crystals (MSU) is crucial to acute gouty arthritis and subsequent spontaneous remission within 7-10 days. Activated PMNs release neutrophil extracellular traps (NETs) that entrap MSU crystals, forming NET-MSU aggregates. Whether NET-MSU aggregates contribute to the resolution of acute inflammation remains to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • The text explains that a special molecule called miR-155 is linked to diseases that don't spread from person to person and can make inflammation and stress in the body worse.
  • It shows that healthy eating and regular exercise can help control miR-155 and reduce the risk of these diseases.
  • The review highlights that certain foods and being active can help lower miR-155 levels and improve the body's healing and immune responses.
View Article and Find Full Text PDF

Toxoplasmosis is a prevalent parasitic infection caused by Toxoplasma gondii known to induce complex immune responses, to control the infection. MicroRNAs (miRNAs) are a cluster of small noncoding RNAs that are reported to have regulatory functions in the immune response. The objective of this study is to assess the expression of miR-155 and its targets, Src homology-2 domain-containing inositol 5- phosphatase 1 (SHIP-1) and suppressor of cytokine signaling-1 (SOCS1), in non-pregnant Iraqi women seropositive for toxoplasmosis.

View Article and Find Full Text PDF

Background: We recently found that butyrate could ameliorate inflammation of alcoholic liver disease (ALD) in mice. However, the exact mechanism remains incompletely comprehended. Here, we examined the role of butyrate on ALD-associated inflammation through macrophage (Mψ) regulation and polarization using in vivo and in vitro experiments.

View Article and Find Full Text PDF

Toxoplasma gondii is well known to infect almost all avian and mammalian species including humans, with worldwide distribution. This protozoan parasite can cause serious toxoplasmosis, posing with a risk to public health. The role of microRNAs in the pathogenesis of T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!