Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high-power, short-wavelength operation of a thulium-doped silica fiber laser at 1726 nm has been demonstrated in a core-pumped monolithic (all-fiber) resonator configuration, in-band pumped by a high-power erbium-only fiber laser operating at 1580 nm. The thulium fiber laser yielded 47 W in a single-spatial-mode output beam for 60-W absorbed pump power. The corresponding slope efficiency, with respect to an absorbed pump power of 80%, compares favorably with the theoretical maximum (Stokes) efficiency of 91.5%. The prospects for further scaling of single-mode power in this wavelength regime to >100 W are considered, as well as the potential applications for high-power lasers operating in this difficult-to-reach wavelength band.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.005230 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!