Gallium indium phosphide (GaInP), lattice matched to gallium arsenide, shows remarkable second-order nonlinear properties, as well as strong photoluminescence (PL) due to its direct band gap. By measuring the second-harmonic generation from the GaInP microwaveguide (0.2×11×1300 μm) before and after stimulating intrinsic photobleaching, we demonstrate that the PL could be strongly suppressed (-34 dB), leaving the nonlinear properties unchanged, making it suitable for low-noise applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.005117 | DOI Listing |
Molecules
December 2024
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
We report the exfoliation of ultrathin gallium oxide (GaO) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These GaO films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on GaO provides a versatile platform for device fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.
View Article and Find Full Text PDFSci Rep
January 2025
Imec, imo-imomec, Thor Park 8320, 3600, Genk, Belgium.
This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of ~ 8%-20% in simulating rack mounted setup and integrated PV systems.
View Article and Find Full Text PDFSmall
January 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Homeostasis is essential in biological neural networks, optimizing information processing and experience-dependent learning by maintaining the balance of neuronal activity. However, conventional two-terminal memristors have limitations in implementing homeostatic functions due to the absence of global regulation ability. Here, three-terminal oxide memtransistor-based homeostatic synapses are demonstrated to perform highly linear synaptic weight update and enhanced accuracy in neuromorphic computing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!