Prostate cancer (PCa) deaths are typically the result of metastatic castration-resistant PCa (mCRPC). Recently, enzalutamide (Enz), an oral androgen receptor inhibitor, was approved for treating patients with mCRPC. Invariably, all PCa patients eventually develop resistance against Enz. Therefore, novel strategies aimed at overcoming Enz resistance are needed to improve the survival of PCa patients. The role of exosomes in drug resistance has not been fully elucidated in PCa. Therefore, we set out to better understand the exosome's role in the mechanism underlying Enz-resistant PCa. Results showed that Enz-resistant PCa cells (C4-2B, CWR-R1, and LNCaP) secreted significantly higher amounts of exosomes (2-4 folds) compared to Enz-sensitive counterparts. Inhibition of exosome biogenesis in resistant cells by GW4869 and dimethyl amiloride strongly decreased their cell viability. Mechanistic studies revealed upregulation of syntaxin 6 as well as its increased colocalization with CD63 in Enz-resistant PCa cells compared to Enz-sensitive cells. Syntaxin 6 knockdown by specific small interfering RNAs in Enz-resistant PCa cells (C4-2B and CWR-R1) resulted in reduced cell number and increased cell death in the presence of Enz. Furthermore, syntaxin 6 knockdown significantly reduced the exosome secretion in both Enz-resistant C4-2B and CWR-R1 cells. The Cancer Genome Atlas analysis showed increased syntaxin 6 expressions associated with higher Gleason score and decreased progression-free survival in PCa patients. Importantly, IHC analysis showed higher syntaxin 6 expression in cancer tissues from Enz-treated patients compared to Enz naïve patients. Overall, syntaxin 6 plays an important role in the secretion of exosomes and increased survival of Enz-resistant PCa cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916724 | PMC |
http://dx.doi.org/10.1002/mc.23129 | DOI Listing |
Cell Commun Signal
October 2024
Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Background: Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear.
View Article and Find Full Text PDFMol Pharm
November 2024
Georgia Cancer Center, Augusta University, Augusta, Georgia 30912, United States.
Androgen deprivation therapy has been the primary treatment strategy for advanced prostate cancer (PCa). But most patients develop castration resistance over time. For FDA-approved second-generation androgen receptor (AR) antagonists, including enzalutamide (ENZ) and abiraterone (AA), patients who initially respond to them eventually develop resistance.
View Article and Find Full Text PDFOncol Rep
October 2024
Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
Proc Natl Acad Sci U S A
September 2022
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905.
Androgen receptor (AR) messenger RNA (mRNA) alternative splicing variants (AR-Vs) are implicated in castration-resistant progression of prostate cancer (PCa), although the molecular mechanism underlying the genesis of AR-Vs remains poorly understood. The gene is often deleted or mutated in PCa and CDK12 deficiency is known to cause homologous recombination repair gene alteration or BRCAness via alternative polyadenylation (APA). Here, we demonstrate that pharmacological inhibition or genetic inactivation of CDK12 induces gene intronic (intron 3) polyadenylation (IPA) usage, AR-V expression, and PCa cell resistance to the antiandrogen enzalutamide (ENZ).
View Article and Find Full Text PDFCell Death Dis
September 2021
George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
Long non-coding RNAs (lncRNAs) have been found to play critical roles in regulating gene expression, but their function in translational control is poorly understood. We found lnc-OPHN1-5, which lies close to the androgen receptor (AR) gene on chromosome X, increased prostate cancer (PCa) Enzalutamide (Enz) sensitivity via decreasing AR protein expression and associated activity. Mechanism dissection revealed that lnc-OPHN1-5 interacted with AR-mRNA to minimize its interaction with the RNA binding protein (RBP) hnRNPA1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!