Atropisomeric 1,2-naphthylene scaffolds provide access to donor-acceptor compounds with helical oligomer-based bridges, and transient absorption studies revealed a highly unusual dependence of the electron-transfer rate on oligomer length, which is due to their well-defined secondary structure. Close noncovalent intramolecular contacts enable shortcuts for electron transfer that would otherwise have to occur over longer distances along covalent pathways, reminiscent of the behavior seen for certain proteins. The simplistic picture of tube-like electron transfer can describe this superposition of different pathways including both the covalent helical backbone, as well as noncovalent contacts, contrasting the wire-like behavior reported many times before for more conventional molecular bridges. The exquisite control over the molecular architecture, achievable with the configurationally stable and topologically defined 1,2-naphthylene-based scaffolds, is of key importance for the tube-like electron transfer behavior. Our insights are relevant for the emerging field of multidimensional electron transfer and for possible future applications in molecular electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201904771 | DOI Listing |
ACS Energy Lett
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Growing evidence indicates the importance of redox reactions homeostasis, mediated predominantly by reactive oxygen species (ROS) in influencing the development, differentiation, progression, metastasis, programmed cell death, tumor microenvironment, and therapeutic resistance of cancer. Therefore, reviewing the ROS-linked epigenetic changes in cancer is fundamental to understanding the progression and prevention of cancer. We review in depth the molecular mechanisms involved in ROS-mediated epigenetic changes that lead to alteration of gene expression by altering DNA, modifying histones, and remodeling chromatin and noncoding RNA.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.
ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!