Computer generated holograms (CGHs) are powerful optical elements used in many fields, such as wavefront shaping, quality testing of complex optics, and anti-counterfeiting devices. The Lee algorithm is the most used to generate binary amplitude Fourier holograms. Grayscale CGHs are known to give a higher reconstruction quality than binary holograms, but they usually require a cumbersome production process. A very simple and straightforward method of manufacturing rewritable grayscale CGHs is proposed here by taking advantage of two key components: a digital micro-mirror device (DMDs) and a photochromic plate. An innovative algorithm, named Island algorithm, able to generate grayscale amplitude Fourier CGHs, is reported and compared with the standard Lee approach, based on 9 levels. A crucial advantage lies on the fact that the increase or decrease of the quantification does not affect the spatial resolution. In other words, the new coding leads to a higher spatial resolution (for a given CGH size) and a reconstructed image with an order of magnitude higher contrast with respect to the classical Lee-coded hologram. In order to show the huge potential of our approach, a 201 level Island hologram is designed, produced and reconstructed, pushing the contrast to values higher than10. These results reveal the potential of our process as well as our algorithm for generating programmable grayscale CGHs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.026446DOI Listing

Publication Analysis

Top Keywords

grayscale cghs
12
algorithm generate
8
amplitude fourier
8
spatial resolution
8
cghs
5
island cgh
4
cgh coding
4
coding scheme
4
scheme concept
4
concept demonstration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!