Standard laser-based fire detection systems are often based on measuring the variation of optical signal amplitude. However, mechanical noise interference and loss from dust and steam can obscure the detection signal, resulting in faulty results or the inability to detect a potential fire. The presented fire detection technology will allow the detection of fire in harsh and dusty areas, which are prone to fires, where current systems show limited performance or are unable to operate. It is not the amount of light or its wavelength that is used for detecting fire, but how the refractive index randomly fluctuates due to heat convection from the fire. In practical terms, this means that light obstruction from ambient dust particles will not be a problem as long as a small fraction of the light is detected and that fires without visible flames can still be detected. The standalone laser system consists of a Linux-based Red Pitaya system, a cheap 650 nm laser diode, and a positive-intrinsic-negative photo-detector. Laser light propagates through the monitored area and reflects off a retroreflector generating a speckle pattern. Every 3 s, time traces and frequency noise spectra are measured, and eight descriptors are deduced to identify a potential fire. Both laboratory and factory acceptance tests have been performed with success.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.007760 | DOI Listing |
Ecol Lett
January 2025
National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China.
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA.
Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.
View Article and Find Full Text PDFBMC Nurs
January 2025
Department of Clinical Nutrition, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
Background: Nurses serving in infectious disease ward represent a distinct occupational group that has attracted considerable attention following epidemic outbreaks. However, prior to this study, no research had delved into the underlying mechanism linking anxiety to burnout symptoms among infectious disease nurses. This study aimed to explore investigate the association between anxiety and burnout among nurses working in such environments and scrutinized the mediating role of perceived stress and the moderating influence of resilience on the principal relationship.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!