A proposed atomic model of the head-to-tail interaction in the filament structure of vimentin.

J Biomol Struct Dyn

Department of Molecular and Cell Biology, Institute of Materials Science, University of Connecticut, Storrs, CT, USA.

Published: October 2020

Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217734PMC
http://dx.doi.org/10.1080/07391102.2019.1688195DOI Listing

Publication Analysis

Top Keywords

proposed atomic
4
atomic model
4
model head-to-tail
4
head-to-tail interaction
4
interaction filament
4
filament structure
4
structure vimentin
4
vimentin communicated
4
communicated ramaswamy
4
ramaswamy sarma
4

Similar Publications

Traditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.

View Article and Find Full Text PDF

On-chip spin-exchange relaxation-free (SERF) atomic magnetometers (AMs) require linearly polarized light as detection light whose wavelength is 795 nm. In this study, we propose and demonstrate an inverse-designed linearly polarized light emitter suitable for 795 nm wavelength light. Due to the fact that the electric field of the TE fundamental mode is almost a beam of linearly polarized light, we verified whether the emission light obtained when only coupling efficiency is taken as the objective function is linearly polarized.

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!