Previous investigations have evaluated the efficacy of anions such as NO, Cl Br, CHCOO, and CFCOO as additives to generate or enhance mass spectrometric signals from explosives under plasma ionization conditions. The results of this study demonstrate that for detecting nitramine-class explosives, such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 1,4-benzoquinone (BQ) is a highly effective and efficient dopant. When used in conjunction with ambient-pressure negative-ion helium-plasma ionization (HePI), 1,4-benzoquinone readily captures an electron, forming an abundant molecular anion (m/z 108), which upon exposure to vapors of RDX and HMX generates adduct ions of m/z 330 and 404, respectively. The signal level recorded for RDX upon adduction to the radical anion of 1,4-benzoquinone under our experimental conditions was significantly higher than that realized by chloride adduction using dichloromethane (DCM) as the dopant.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-019-02339-8DOI Listing

Publication Analysis

Top Keywords

14-benzoquinone highly
8
efficient dopant
8
helium-plasma ionization
8
ionization hepi
8
14-benzoquinone
4
highly efficient
4
dopant enhanced
4
ionization
4
enhanced ionization
4
ionization detection
4

Similar Publications

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Global Publication Trends and Research Hotspots of Diabetes and Osteoporosis.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Rheumatology and Immunology, The First Affiliated Hospital of Army Medical University, Chongqing, China.

Background: Diabetes and osteoporosis, as chronic diseases with high incidence, have caused deep concern in the field of global public health due to their high morbidity and mortality. More importantly, the complex and close relationship between diabetes and osteoporosis has gradually become the focus of scientific research. It is very meaningful to carry out bibliometric analysis in the research field of diabetes and osteoporosis to describe the current international trend and present a visual representation of the past and emerging trends of diabetes and osteoporosis in the past decade.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!