A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds. | LitMetric

Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds.

Transgenic Res

National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Published: February 2020

The vitamin E family includes tocopherols and tocotrienols, which are essential lipid-soluble antioxidants necessary for human and livestock health. The seeds of many plant species, including maize, have high gamma (γ)-tocopherol but low alpha (α)-tocopherol contents; however, α-tocopherol is the most effective antioxidant. Therefore, it is necessary to optimize the tocopherol composition in plants. α-Tocopherol is synthesized from γ-tocopherol by γ-tocopherol methyltransferase (γ-TMT, VTE4) in the final step of the tocopherol biosynthetic pathway. In the present study, the full-length coding sequence (CDS) of γ-TMT was isolated from Zea mays, named ZmTMT. The ZmTMT CDS was 1059 bp in size, encoding 352 amino acids. Recombinant ZmTMT was expressed in Escherichia coli and the purified protein effectively converted γ-tocopherol into α-tocopherol in vitro. A comparison of enzyme activities showed that the activity of ZmTMT was higher than that of GmTMT2a (Glycine max) and AtTMT (Arabidopsis thaliana). Overexpression of ZmTMT increased the α-tocopherol content 4-5-fold in transgenic Arabidopsis and around 6.5-fold in transgenic maize kernels, and increased the α-/γ-tocopherol ratio to approximately 15 and 17, respectively. These results show that it is feasible to overexpress ZmTMT to optimize the tocopherol composition in maize; such a corn product might be useful in the feed industry in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-019-00180-zDOI Listing

Publication Analysis

Top Keywords

γ-tocopherol methyltransferase
8
α-tocopherol content
8
transgenic arabidopsis
8
optimize tocopherol
8
tocopherol composition
8
zmtmt
7
α-tocopherol
6
γ-tocopherol
5
overexpression maize
4
maize γ-tocopherol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!