A fluorescent fullerene nanoparticle (NP)-based lateral flow immunochromatographic assay (LFIA) was developed for the rapid and quantitative detection of C-reactive protein (CRP) in serum. The polyclonal CRP-antibody-conjugated fullerene NPs were simply prepared by 1-ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride coupling after carboxylation of fluorescent fullerene NPs. By applying the CRP-antibody-conjugated fullerene NPs to a lateral flow test strip, quantitative analysis of CRP in serum was possible at a concentration range of 0.1-10 ng/ml within 15 min. We anticipate that this novel fluorescent fullerene NP-based LFIA can be useful for the rapid and accurate sensing of biological and chemical species, contributing to the disease diagnosis and prognosis, environmental monitoring, and food safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823421 | PMC |
http://dx.doi.org/10.1186/s40580-019-0207-0 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.
View Article and Find Full Text PDFNanotoxicology
December 2024
Department of Systems Engineering and Biology, Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland.
Fullerenes (C, C) as carbon nanomaterials can enter the environment through natural processes and anthropogenic activities, while synthetic fullerenes are commonly used in medicine in targeted therapies in association with antibodies, or anticancer and antimicrobial drugs. As the nanoparticles, they can pass through cell membranes and organelles and accumulate in the entire cytoplasm. The red-fluorescent, water-soluble [70]fullerene derivative C-OMe-ser, which produces reactive oxygen species upon illumination with an appropriate wavelength, passed into the cytoplasm of the middle region in the digestive system.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Research Centre for Medical Genetics, 115522 Moscow, Russia.
Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).
View Article and Find Full Text PDFACS Nano
December 2024
Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Modulating the optical response of fluorescent nanoparticles through rational modification of their surface chemistry can yield distinct optical signatures upon the interaction with structurally related molecules. Herein, we present a method for tuning the fluorescence response of single-walled carbon nanotubes (SWCNTs) toward dopamine (DA) and serotonin, two structurally related monoamine-hydroxylated aromatic neurotransmitters, by introducing oxygen defects into (6,5) chirality-enriched SWCNTs suspended by sodium cholate (SC). This modification facilitated opposite optical responses toward these neurotransmitters, where DA distinctly increased the fluorescence of the defect-induced emission of SWCNTs (D-SWCNTs) 6-fold, while serotonin notably decreased it.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!