Protein hydrolysis and fermentation under methanogenic and acidifying conditions.

Biotechnol Biofuels

1Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.

Published: October 2019

Background: Many kinds of wastewaters contain appreciable quantities of protein. Anaerobic processes are suitable for the treatment of wastewater high in organics to achieve pollution control and recovery of energy as methane and hydrogen, or intermediates for production of biofuels and valuable biochemicals. A distinction between protein hydrolysis and amino acid fermentation, especially for dissolved proteins, is needed to target which one is truly rate-limiting and to effectively harvest bioproducts during anaerobic conversion of these wastewaters. This study explored mesophilic anaerobic hydrolysis and amino acid fermentation of gelatine, as a model for dissolved proteins, at pH 7 and at pH 5.

Results: The results showed that at pH 7, protein hydrolysis (first-order rate of 0.15 h) was approximately 5 times faster than acidification of the hydrolysis products (first-order rate of 0.03 h), implying that not hydrolysis but acidification was the rate-limiting step in anaerobic dissolved protein degradation. This was confirmed by (temporary) accumulation of amino acids. Nineteen different amino acids were detected during the first 8 incubation hours of gelatine at neutral pH and the total chemical oxygen demand (COD) of these 19 amino acids was up to approximately 40% of the COD of the gelatine that was added. Protein hydrolysis at pH 5 was 2-25 times slower than at pH 7. Shifting the initial pH from neutral to acidic conditions (pH 5) inhibited protein degradation and changed the volatile fatty acids (VFA) product profile. Furthermore, the presence or absence of methanogenic activity did not affect the rates of protein hydrolysis and acidification.

Conclusions: The findings in this study can help to set a suitable solid retention time to accomplish anaerobic degradation of protein-rich wastewaters in continuous reactor systems. For example, if the target is harvesting VFAs, methanogens can be washed-out for a shorter retention time while amino acid fermentation, instead of hydrolysis as assumed previously, will govern the design and solutions to improve the system dealing with dissolved proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815036PMC
http://dx.doi.org/10.1186/s13068-019-1592-7DOI Listing

Publication Analysis

Top Keywords

protein hydrolysis
20
amino acid
12
acid fermentation
12
dissolved proteins
12
amino acids
12
protein
8
hydrolysis
8
hydrolysis amino
8
first-order rate
8
protein degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!