This comprehensive work addresses, for the first time, the heterologous production, purification, biochemical characterization and carbohydrate specificity of MelA, a cold-active α-galactosidase belonging to the Glycoside Hydrolase family 36, from the probiotic organism Lactobacillus plantarum WCFS1. The hydrolytic activity of MelA α-galactosidase on a wide range of p-nitrophenyl glycoside derivatives and carbohydrates of different molecular-weights showed its high selectivity and efficiency towards the α(1 → 6) glycosidic bonds involving the anomeric carbon of galactose and the C6-hydroxyl group of galactose or glucose units. MelA α-galactosidase also presented a high regioselectivity, efficiency and diversity in accommodating donor and acceptor substrates for the synthesis of α-GOS through transgalactosylation reactions. The catalytic mechanism of MelA for the production of α-GOS was elucidated, revealing its great preference for the transfer of galactosyl residues to the C6-hydroxyl group of galactose units to elongate the chain of α-GOS having either a terminal sucrose (raffinose family oligosaccharides, RFOS) or a terminal glucose (melibiose, manninotriose and verbascotetraose). Our findings indicate the feasibility of using MelA α-galactosidase from Lactobacillus plantarum WCFS1 in the hydrolysis of RFOS and in the efficient and versatile synthesis of α-GOS with appealing functional properties in the context of food and nutraceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.10.237DOI Listing

Publication Analysis

Top Keywords

lactobacillus plantarum
12
plantarum wcfs1
12
mela α-galactosidase
12
carbohydrate specificity
8
specificity mela
8
c6-hydroxyl group
8
group galactose
8
synthesis α-gos
8
mela
6
α-galactosidase
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!