Few studies reported the application of miRNA in bone regeneration. In this study, the expression of miR133a and miR133b in murine BMSCs was inhibited via antagomiR-133a/b and the osteogenic differentiation in murine BMSCs was evaluated. The RT-PCR, flow cytometry, cell counting kit-8, and annexin V-FITC/PI double staining assays were performed. Double knockdown miR133a and miR133b can promote BMSC osteogenic differentiation. At optimum N/P ration (15:1), the loading efficiency can reach over 90%. CTH-antagomiR-133a/b showed no cytotoxicity to BMSCs and diminished miR133a and miR133b expression in BMSCs. Furthermore, chitosan-based sustained delivery system can facilitate continuous dosing of antagomiR-133a/b, which enhanced calcium deposition and osteogenic specific gene expression in vitro. The new bone formation was enhanced after the sustained delivery system containing CTH-antagomiR-133a/b nanoparticles was used in mouse calvarial bone defect model. Our results demonstrate that CTH nanoparticles could facilitate continuous dosing of antagomiR133a/b, which can promote osteogenic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2019.102116DOI Listing

Publication Analysis

Top Keywords

mir133a mir133b
12
osteogenic differentiation
12
bone regeneration
8
murine bmscs
8
sustained delivery
8
delivery system
8
facilitate continuous
8
continuous dosing
8
promotion bone
4
regeneration cs/gp-cth/antagomir-133a/b
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!