Substandard and falsified medical products may cause harm to patients and fail to treat the diseases or conditions for which they were intended. It is therefore required to have analytical methods available to assess medical product quality. Benchtop NMR spectroscopy provides a generic, inherently quantitative, analytical method capable of separating specific signals from those of a matrix. We have developed an analytical method for the analysis of active ingredients in pharmaceutical products and illegal drugs, based on benchtop NMR spectroscopy. Within its resolution limits, benchtop NMR spectroscopy is useful in determining the identity of the active ingredients in products containing acetaminophen, aspirin, caffeine, diclofenac, ibuprofen, naproxen, sildenafil, tadalafil and sibutramine, cocaine, and gamma hydroxybutyric acid, with a limit of detection of about 1 mg/mL. Furthermore, the content of the active ingredient can be determined with an error of 10%. Additionally, a chemometrics approach is shown to be useful to classify spectra in order to identify the active substances present in the sample, reducing the need for expert interpretation of the spectra acquired.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2019.112939DOI Listing

Publication Analysis

Top Keywords

benchtop nmr
16
nmr spectroscopy
16
substandard falsified
8
illegal drugs
8
analytical method
8
active ingredients
8
benchtop
4
spectroscopy
4
spectroscopy analysis
4
analysis substandard
4

Similar Publications

The introduction of benchtop NMR instruments has made NMR spectroscopy a more accessible, affordable option for research and industry, but the lower spectral resolution and SNR of a signal acquired on low magnetic field spectrometers may complicate the quantitative analysis of spectra. In this work, we compare the performance of multiple neural network architectures in the task of converting simulated 100 MHz NMR spectra to 400 MHz with the goal of improving the quality of the low-field spectra for analyte quantification. Multi-layered perceptron networks are also used to directly quantify metabolites in simulated 100 and 400 MHz spectra for comparison.

View Article and Find Full Text PDF

Hyperpolarised benchtop NMR spectroscopy for analytical applications.

Prog Nucl Magn Reson Spectrosc

October 2024

Department of Chemistry, University of York, York, YO10 5DD, UK. Electronic address:

Benchtop NMR spectrometers, with moderate magnetic field strengths (B=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced.

View Article and Find Full Text PDF
Article Synopsis
  • * The T2-weighted fast spin echo (T2W-FSE) MRI technique is commonly used to visualize HIFU-induced thermal lesions but suffers from issues like ringing artifacts and reduced spatial resolution due to T2 decay effects.
  • * By applying an inverse Fourier transform (IFT) multiplication scheme with specially designed filters, researchers improved MRI image quality, resulting in significantly better spatial resolutions and enhanced signal-to-noise ratio in detecting thermal lesions.
View Article and Find Full Text PDF

Sensitivity is often the Achilles' heel of liquid-state nuclear magnetic resonance (NMR) experiments. This problem is perhaps most pressing at the lowest fields (e.g.

View Article and Find Full Text PDF

Purpose: Imaging phantoms with known anisotropic mechanical properties are needed to evaluate magnetic resonance elastography (MRE) methods to estimate anisotropic parameters. The aims of this study were to fabricate mechanically anisotropic MRE phantoms, characterize their mechanical behavior by direct testing, then assess the accuracy of MRE estimates of anisotropic properties using a transversely isotropic nonlinear inversion (TI-NLI) algorithm.

Methods: Directionally scaled and unscaled lattices were designed to exhibit anisotropic or isotropic mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!