TIPE1 accelerates atherogenesis by inducing endothelial dysfunction in response to oxidative stress.

Biochim Biophys Acta Mol Basis Dis

Department of Immunology, Shandong University School of Basic Medical Science, Ji'nan, PR China; Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Medicine, Jinan, Shandong 250012, PR China. Electronic address:

Published: January 2020

Atherosclerosis is an inflammatory disease of the arterial wall, which involves endothelial cells and immune cells. Endothelial dysfunction has been considered an important step in the initiation of the disease. TIPE1 is a newly identified protein of the TIPE family, and plays a vital role in inflammation and tumorigenesis. However, its role in atherogenesis remains unclear. In this study, we demonstrated that TIPE1 promoted atherogenesis by inducing endothelial dysfunction. When human umbilical vein endothelial cells (HUVECs) were exposed to oxidative stress, the level of TIPE1 was significantly up-regulated, and the ROS generation markedly increased in TIPE1 over-expressing HUVECs. As a result, the growth of HUVECs was inhibited, and the apoptosis was enhanced. However, the cell contact ability between HUVECs and THP-1 cells were augmented due to the up-regulation of adhesion molecules such as E-selectin and ICAM-1 induced by TIPE1 overexpression. Importantly, ApoE mice injected with TIPE1 recombinant lentivirus developed significantly severe atherosclerosis accompanied by hyperglycemia, hypercholesterolemia and increased white blood count. These findings indicated that excessive ROS induced by the overexpression of TIPE1 in endothelial cells accelerated the process of atherogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2019.165578DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
12
endothelial cells
12
tipe1
8
atherogenesis inducing
8
inducing endothelial
8
oxidative stress
8
endothelial
6
cells
5
tipe1 accelerates
4
atherogenesis
4

Similar Publications

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.

View Article and Find Full Text PDF

Ginsenoside Rg1 improves hypoxia-induced pulmonary vascular endothelial dysfunction through TXNIP/NLRP3 pathway-modulated mitophagy.

J Ginseng Res

January 2025

The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.

Background: Vascular endothelial dysfunction (VED) is one of the main pathogenic events in pulmonary arterial hypertension (PAH). Previous studies have demonstrated that the ginsenoside Rg1 (Rg1) can ameliorate PAH, but the mechanism by which Rg1 affects pulmonary VED in hypoxia-induced PAH remains unclear.

Methods: Network pharmacology, molecular docking and other experiments were used to explore the mechanisms by which Rg1 affects PAH.

View Article and Find Full Text PDF

Abnormal autophagy regulation is implicated in lupus and other autoimmune diseases. We investigated autophagy in the murine pristane-induced lupus model. Pristane causes monocyte/macrophage-mediated endoplasmic reticulum (ER) stress in lung endothelial cells and diffuse alveolar hemorrhage (DAH) indistinguishable from DAH in lupus patients.

View Article and Find Full Text PDF

Background: Recent research indicates that the intestinal microbial community, known as the gut microbiota, may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). To understand this relationship, this study used a comprehensive bibliometric analysis to explore and analyze the currently little-known connection between gut microbiota and NAFLD, as well as new findings and possible future pathways in this field.

Aim: To provide an in-depth analysis of the current focus issues and research developments on the interaction between gut microbiota and NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!