Computational study of clot formation in aneurysms treated with shape memory polymer foam.

Med Eng Phys

Computational Engineering Division, Lawrence Livermore National Laboratory, P.O. Box 808, L-090, Livermore, CA 94551, United States. Electronic address:

Published: January 2020

To prevent aneurysmal rupture, intracranial aneurysms are often treated with endovascular metal coils that fill the aneurysm sac and stimulate thrombus formation, thereby isolating the aneurysm from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational thrombus model is used to predict the clotting response within idealized 2D aneurysms virtually treated with foam. The results are compared to previously reported clot formation predictions in identical 2D aneurysm geometries filled with simplified endovascular metal coil shapes. Each of the foam-filled aneurysms reached at least 94% thrombus occlusion regardless of foam pore size or orientation, whereas the final thrombus occlusion within the coil-filled aneurysms varied from 80.8 to 92.2% with many of the cases leaving large areas in the aneurysm neck unfilled. Based on the simulations presented here, shape memory polymer foams may be able to produce more predictable, uniform, and complete clotting results than bare metal coils, independent of foam geometry or orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2019.10.002DOI Listing

Publication Analysis

Top Keywords

shape memory
12
memory polymer
12
clot formation
8
aneurysms treated
8
polymer foam
8
endovascular metal
8
metal coils
8
thrombus occlusion
8
aneurysm
6
aneurysms
5

Similar Publications

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

A nutritious diet is crucial for good health and cognitive function, including working memory (WM). Nutrients like omega-3 fatty acids, antioxidants, and vitamins found in whole foods have been linked to improved WM. Examining the impact of dietary habits on WM in women, who face hormonal and health-related challenges, is important.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

Microstructure and Thermal Cyclic Behavior of FeNiCoAlTaB High-Entropy Alloy.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.

View Article and Find Full Text PDF

The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!