Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies.

Environ Pollut

Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China. Electronic address:

Published: January 2020

It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113438DOI Listing

Publication Analysis

Top Keywords

leydig cells
24
mitochondrial impairment
12
cells
8
fluoride induce
8
induce mitochondrial
8
mitophagy testicular
8
testicular cells
8
tm3 leydig
8
fluoride
7
mitophagy
6

Similar Publications

Impact of trypanosomiasis on male camel infertility.

Front Vet Sci

January 2025

Zoology and Entomology Department, Faculty of Science, New Valley University, El-Kharga, Egypt.

Introduction: Blood parasitism is a significant clinical disease that silently undermines the livestock industry, particularly affecting camels. This study aimed to assess the prevalence of in Arabian camels () and its impact on infertility by examining serum protein fractions, lipids, reproductive indices, and the expression of heat shock protein (HSP70) during breeding season.

Methods: A total of 107 male post-pubertal camels, aged between 5 and 10 years, were collected randomly from slaughtering house in Assiut Governorate, Egypt.

View Article and Find Full Text PDF

Even though Leydig cell tumor (LCT) represents the most common neoplasia among testicular sex cord-stromal tumors (SCSTs), it is a rare condition, comprising 1-2% of all testicular tumors, with a 10% risk of malignancy most commonly located in retroperitoneal lymph nodes. LCTs may demonstrate various clinical manifestations - from asymptomatic intratesticular swelling through nonspecific symptoms such as loss of libido, impotence or infertility, up to feminizing or virilizing syndromes due to hormonal activity of the tumor. This article presents a case of Leydig cell tumor that was associated with azoospermia what have rarely been reported worldwide.

View Article and Find Full Text PDF

Introduction: Getah virus (GETV) is a zoonotic virus transmitted via a mosquito-vertebrate cycle. While previous studies have explored the epidemiology and pathogenicity of GETV in various species, its molecular mechanisms remain largely unexplored.

Methods: This study investigated the impact of GETV infection and associated molecular mechanisms on reactive oxygen species (ROS) and autophagy levels in mouse Leydig cells both and .

View Article and Find Full Text PDF

A determination of the main regulators of necroptosis in testicular tissue under different heat stresses.

J Mol Histol

January 2025

Department of Histology and Embryology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Türkiye.

Although minimal increases in testicular temperature can compromise spermatogenesis and lead to fertility-related problems, the basic mechanism involved in germ cell destruction as a response to heat stress is still unclear. However, necroptosis is known to regulate a number of physiological and pathological events. This study investigated the role of RIPK1/RIPK3 and MLKL, the main regulators of necroptosis, against different heat stresses in testis tissue.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!